Hydrolytic Degradation of 3D-Printed Poly (Lactic Acid) Structures

  • Logan Mulderrig Florida A&M University-Florida State University College of Engineering, USA
  • Franchino Chambers Florida A&M University-Florida State University College of Engineering, USA
  • Taylor A. Isais Florida State University, USA
  • Richard Jeske Florida A&M University-Florida State University College of Engineering, USA
  • Yan Li Florida A&M University-Florida State University College of Engineering, USA http://orcid.org/0000-0002-5938-8519
  • Justin G. Kennemur Florida State University, USA http://orcid.org/0000-0002-2322-0386
  • Daniel T. Hallinan, Jr. Florida A&M University-Florida State University College of Engineering, USA http://orcid.org/0000-0002-3819-0992
Keywords: PLA properties, Hydrolysis, Chain Scission, Modeling, 3D Printing, Modulus


Hydrolytic degradation of commercially available 3D printing filament, i.e. poly (lactic acid) with broad molecular weight distribution was induced by incubating 3D-printed parts in deionized water at 3 temperatures. Small changes in orthogonal dimensions occurred due to relaxation of printing stresses, but no mass or volume loss were detected over the time-frame of the experiments. Molecular weight decreased while polydispersity remained constant. The most sensitive measure of degradation was found to be nondestructive, small-amplitude oscillatory tensile measurements. A rapid decay of tensile storage modulus was found with an exponential decay time constant of about an hour. This work demonstrates that practical monitoring of commercially available PLA degradation can be achieve with linear viscoelastic measurements of modulus.


Abd Alsaheb, R. A., Aladdin, A., Othman, N. Z., Abd Malek, R., Leng, O. M., Aziz, R., & El Enshasy, H. A. (2015). Recent applications of polylactic acid in pharmaceutical and medical industries. J. Chem. Pharm. Res, 7, 51-63.
Agrawal, C. M., Huang, D., Schmitz, J. P., & Athanasiou, K. A. (1997). Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue Engineering, 3, 345-352. https://doi.org/10.1089/ten.1997.3.345
Ali Md, H., Batai, S., & Sarbassov, D. (2019). 3D printing: a critical review of current development and future prospects. Rapid Prototyping Journal, 25(6), 1108-1126. https://doi.org/10.1108/RPJ-11-2018-0293
Anderson, K. S., Schreck, K. M., & Hillmyer, M. A. (2008). Toughening Polylactide. Polymer Reviews, 48(1), 85-108. https://doi.org/10.1080/15583720701834216
Becker, J. M., Pounder, R. J., & Dove, A. P. (2010). Synthesis of Poly(lactide)s with Modified Thermal and Mechanical Properties. Macromolecular Rapid Communications, 31(22), 1923-1937. https://doi.org/10.1002/marc.201000088
Bower, D. I. (2002). An Introduction to Polymer Physics. 199-200.
Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 55(10), 1057-1075. https://doi.org/10.1080/03602559.2015.1132465
Apparatus and method for creating three-dimensional objects. (1992).
Dorgan, J. R., Lehermeier, H., & Mang, M. (2000). Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s. Journal of Polymers and the Environment, 8(1), 1-9. https://doi.org/10.1023/A:1010185910301
Elsawy, M. A., Kim, K. H., Park, J. W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352. https://doi.org/10.1016/j.rser.2017.05.143
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review ☆. Advanced Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2016.06.012
Gonzalez Ausejo, J., Rydz, J., Musioł, M., Sikorska, W., Janeczek, H., Sobota, M., . . . Kowalczuk, M. (2018). Three-dimensional printing of PLA and PLA/PHA dumbbell-shaped specimens of crisscross and transverse patterns as promising materials in emerging application areas: Prediction study. Polymer Degradation and Stability, 156, 100-110. https://doi.org/10.1016/j.polymdegradstab.2018.08.008
Gorrasi, G., & Pantani, R. (2018). Hydrolysis and Biodegradation of Poly(lactic acid). In M. L. Di Lorenzo & R. Androsch (Eds.), Synthesis, Structure and Properties of Poly(lactic acid) (pp. 119-151). Cham: Springer International Publishing.
Graessley, W. W. (2008). Chapter 2 Linear Viscoelasticity. In Polymeric Liquids & Networks: Dynamics and Rheology (pp. 101-178). New York: Garland Science.
Höglund, A., Odelius, K., & Albertsson, A.-C. (2012). Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide). ACS Applied Materials & Interfaces, 4(5), 2788-2793. https://doi.org/10.1021/am300438k
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9, 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
Masutani, K., & Kimura, Y. (2018). Present Situation and Future Perspectives of Poly(lactic acid). In M. L. Di Lorenzo & R. Androsch (Eds.), Synthesis, Structure and Properties of Poly(lactic acid) (pp. 1-25). Cham: Springer International Publishing.
Mehta, R., Kumar, V., Bhunia, H., & Upadhyay, S. N. (2005). Synthesis of Poly(Lactic Acid): A Review. Journal of Macromolecular Science, Part C, 45(4), 325-349. https://doi.org/10.1080/15321790500304148
Narayanan, G., Vernekar, V. N., Kuyinu, E. L., & Laurencin, C. T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 107, 247-276. https://doi.org/10.1016/j.addr.2016.04.015
Raquez, J.-M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10), 1504-1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
Santonja-Blasco, L., Ribes-Greus, A., & Alamo, R. G. (2012). Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates. Polymer Degradation and Stability, 98(3), 771-784. https://doi.org/10.1016/j.polymdegradstab.2012.12.012
Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T., & Brem, H. (2016). Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews, 107, 163-175. https://doi.org/10.1016/j.addr.2016.06.018
Verdu, J. (1994). Effect of Aging on the Mechanical Properties of Polymeric Materials. Journal of Macromolecular Science, Part A, 31(10), 1383-1398. 10.1080/10601329409350099
Vink, E. T. H., & Davies, S. (2015). Life Cycle Inventory and Impact Assessment Data for 2014 Ingeo™ Polylactide Production. Industrial Biotechnology, 11(3), 167-180. https://doi.org/10.1089/ind.2015.0003
Vink, E. T. H., Rábago, K. R., Glassner, D. A., & Gruber, P. R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and Stability, 80(3), 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5
Weir, N. A., Buchanan, F. J., Orr, J. F., Farrar, D. F., & Dickson, G. R. (2004). Degradation of poly-L-lactide. Part 2: Increased temperature accelerated degradation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218, 321-330. https://doi.org/10.1243/0954411041932809
Yao, T., Deng, Z., Zhang, K., & Li, S. (2019). A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering, 163, 393-402. https://doi.org/10.1016/j.compositesb.2019.01.025