Preparation of Chlorella-based Phosphide Catalysts and Their Improvement of HER Performance
Abstract
Hydrogen evolution reaction (HER) is a core technology for achieving green hydrogen production, and the development of low-cost, highly active catalysts is key to its industrialization. Transition metal phosphides (TMPs) have emerged as an important alternative to precious metal catalysts due to their superior catalytic performance and significantly lower cost. This study uses chlorella, an environmentally friendly biomass, as raw material to prepare phosphide catalysts. chlorella not only provides carbon and phosphorus sources for catalyst synthesis but also regulates the pore structure and morphology of the catalyst surface through its natural spherical structure, optimizing the distribution of active sites. The study systematically analyzed the catalytic mechanism of phosphides in the HER, including electron transfer pathways, the role of active sites, and the influence of surface reconstruction, while also highlighting the advantages of chlorella as a raw material in terms of composition and synthesis process. The results indicate that phosphide catalysts constructed using chlorella significantly enhance HER catalytic activity by improving the adsorption capacity for the reaction intermediate H* and electron conduction efficiency, providing new insights for the design of biomass-based high-efficiency hydrogen evolution catalysts.
References
[2] Shahroudi, A., Esfandiari, M., & Habibzadeh, S. (2022). Nickel sulfide and phosphide electrocatalysts for hydrogen evolution reaction: Challenges and future perspectives. RSC Advances, 12(45), 29440–29468. https://doi.org/10.1039/D2RA04936G
[3] Pratama, D. S. A., Haryanto, A., & Lee, C. W. (2023). Heterostructured mixed metal oxide electrocatalyst for the hydrogen evolution reaction. Frontiers in Chemistry, 11, 1141361. https://doi.org/10.3389/fchem.2023.1141361
[4] Wang, M., Yang, H., Shi, J., Chen, Y., Zhou, Y., Wang, L., ... Li, Y. (2021). Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angewandte Chemie, 133(11), 5835–5841. https://doi.org/10.1002/ange.202013420
[5] Li, B. Q., Zhao, C. X., Chen, S., Liu, J. N., Chen, X., Song, L., & Zhang, Q. (2019). Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn–air batteries. Advanced Materials, 31(19), 1900592. https://doi.org/10.1002/adma.201900592
[6] Li, S. H., Qi, M. Y., Tang, Z. R., & Xu, Y. J. (2021). Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chemical Society Reviews, 50(13), 7539–7586. https://doi.org/10.1039/D1CS00256C
[7] Shah, S. S. A., Khan, N. A., Imran, M., Rashid, M., Tufail, M. K., Rehman, A. U., ... Tsiakaras, P. (2023). Recent advances in transition metal tellurides (TMTs) and phosphides (TMPs) for hydrogen evolution electrocatalysis. Membranes, 13(1), 113. https://doi.org/10.3390/membranes13010113
[8] Tian, J., Liu, Q., Asiri, A. M., & Sun, X. (2014). Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 136(21), 7587–7590. https://doi.org/10.1021/ja5031286
[9] Li, Y., Dong, Z., & Jiao, L. (2020). Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Advanced Energy Materials, 10(11), 1902104. https://doi.org/10.1002/aenm.201902104
[10] Wang, Z., Cheng, M., & Yu, R. (2022). Doping regulation in transition metal phosphides for hydrogen evolution catalysts. Chemical Journal of Chinese Universities, 43(11), 20220233. https://doi.org/10.7503/cjcu20220233
[11] Ge, Z., Fu, B., Zhao, J., Li, X., Ma, B., & Chen, Y. (2020). A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. Journal of Materials Science, 55(29), 14081–14104. https://doi.org/10.1007/s10853-020-04966-0
[12] Liu, D., Ai, H., Chen, M., Zhou, P., Li, B., Liu, D., ... Pan, H. (2021). Multi-phase heterostructure of CoNiP/CoxP for enhanced hydrogen evolution under alkaline and seawater conditions by promoting H2O dissociation. Small, 17(17), 2007557. https://doi.org/10.1002/smll.202007557
[13] Wang, L., Liang, K., Deng, L., & Liu, Y. N. (2019). Protein hydrogel networks: A unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions. Applied Catalysis B: Environmental, 246, 89–99. https://doi.org/10.1016/j.apcatb.2019.01.013
[14] Menezes, P. W., Indra, A., Zaharieva, I., Walter, C., Loos, S., Hoffmann, S., ... Driess, M. (2019). Helical cobalt borophosphates to master durable overall water-splitting. Energy & Environmental Science, 12(3), 988–999. https://doi.org/10.1039/C8EE03226H
[15] Jiang, H., Yan, L., Zhang, S., Zhao, Y., Yang, X., Wang, Y., ... Wang, L. (2021). Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Letters, 13(1), 215. https://doi.org/10.1007/s40820-021-00722-2
[16] Wang, M., Fu, W., Du, L., Wei, Y., Rao, P., Wei, L., ... Sun, S. (2020). Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis. Applied Surface Science, 515, 146059. https://doi.org/10.1016/j.apsusc.2020.146059
[17] Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99–148. https://doi.org/10.1016/j.ccr.2015.12.005
[18] Cui, X., Ren, P., Deng, D., Deng, J., & Bao, X. (2016). Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy & Environmental Science, 9(1), 123–129. https://doi.org/10.1039/C5EE03316K
[19] Tang, C., Wang, H. F., Chen, X., Li, B. Q., Hou, T. Z., Zhang, B., ... Wei, F. (2016). Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Advanced Materials, 28(32), 6845–6851. https://doi.org/10.1002/adma.201601406
[20] Sun, M., Liu, H., Qu, J., & Li, J. (2016). Earth-rich transition metal phosphide for energy conversion and storage. Advanced Energy Materials, 6(13), 1600087. https://doi.org/10.1002/aenm.201600087
[21] Hulliger, F. (2008). Crystal chemistry of the chalcogenides and pnictides of the transition elements. Structure and Bonding, 83–229.
[22] Callejas, J. F., Read, C. G., Roske, C. W., Lewis, N. S., & Schaak, R. E. (2016). Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chemistry of Materials, 28(17), 6017–6044. https://doi.org/10.1021/acs.chemmater.6b02194
[23] Jiang, P., Liu, Q., Liang, Y., Tian, J., Asiri, A. M., & Sun, X. (2014). A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie, 126(47), 13069–13073. https://doi.org/10.1002/ange.201406848
[24] Song, J., Zhu, C., Xu, B. Z., Fu, S., Engelhard, M. H., Ye, R., ... Lin, Y. (2017). Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Advanced Energy Materials, 7(2), 1601555. https://doi.org/10.1002/aenm.201601555
[25] Lv, X., Hu, Z., Ren, J., Liu, Y., Wang, Z., & Yuan, Z. Y. (2019). Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 6(1), 74–81. https://doi.org/10.1039/C8QI01064G
[26] Sun, Y., Zhang, T., Li, C., Xu, K., & Li, Y. (2020). Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 8(27), 13415–13436. https://doi.org/10.1039/D0TA03537K
[27] Mo, Q., Zhang, W., He, L., Yu, X., & Gao, Q. (2019). Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Applied Catalysis B: Environmental, 244, 620–627. https://doi.org/10.1016/j.apcatb.2018.11.075
[28] Jiang, Y., Sun, Z., Tang, C., Zhou, Y., Zeng, L., & Huang, L. (2019). Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Applied Catalysis B: Environmental, 240, 30–38. https://doi.org/10.1016/j.apcatb.2018.08.059
[29] Liu, Y., Liu, S., Wang, Y., Zhang, Q., Gu, L., Zhao, S., ... Dai, Z. (2018). Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P–Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. Journal of the American Chemical Society, 140(8), 2731–2734. https://doi.org/10.1021/jacs.7b12615
[30] Zhang, Q., Tang, S., Shen, L., Yang, W., Tang, Z., & Yu, L. (2021). Flower-like tungsten-doped Fe–Co phosphides as efficient electrocatalysts for the hydrogen evolution reaction. CrystEngComm, 23(26), 4724–4731. https://doi.org/10.1039/D1CE00503A
[31] Liu, T., Ma, X., Liu, D., Hao, S., Du, G., Ma, Y., ... Chen, L. (2017). Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catalysis, 7(1), 98–102. https://doi.org/10.1021/acscatal.6b02849
[32] Xiao, X., Tao, L., Li, M., Lv, X., Huang, D., Jiang, X., ... Shen, Y. (2018). Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 9(7), 1970–1975. https://doi.org/10.1039/C7SC04569C
[33] Lu, S. S., Zhang, L. M., Dong, Y. W., Zhang, J. Q., Yan, X. T., Sun, D. F., ... Dong, B. (2019). Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 7(28), 16859–16866. https://doi.org/10.1039/C9TA04123H
[34] Kibsgaard, J., & Jaramillo, T. F. (2014). Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 53(52), 14433–14437. https://doi.org/10.1002/anie.201408222
[35] Zhou, Q., Shen, Z., Zhu, C., Li, J., Ding, Z., Wang, P., ... Zhang, H. (2018). Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Advanced Materials, 30(27), 1800140. https://doi.org/10.1002/adma.201800140
[36] Yang, M., Li, Y., Yan, T., & Jin, Z. (2021). NiCo LDH in situ derived NiCoP 3D nanoflowers coupled with a Cu3P p–n heterojunction for efficient hydrogen evolution. Nanoscale, 13(32), 13858–13872. https://doi.org/10.1039/D1NR03165J
[37] Yang, L., & Zhang, L. (2019). N-enriched porous carbon encapsulated bimetallic phosphides with hierarchical structure derived from controlled electrodepositing multilayer ZIFs for electrochemical overall water splitting. Applied Catalysis B: Environmental, 259, 118053. https://doi.org/10.1016/j.apcatb.2019.118053
[38] Zhang, Y., Chen, P., Liu, S., Peng, P., Min, M., Cheng, Y., ... Ruan, R. (2017). Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 230, 143–151. https://doi.org/10.1016/j.biortech.2017.01.027
[39] Saka, C. (2021). Very efficient dehydrogenation of methanolysis reaction with nitrogen doped Chlorella vulgaris microalgae carbon as metal-free catalysts. International Journal of Hydrogen Energy, 46(40), 20961–20971. https://doi.org/10.1016/j.ijhydene.2021.03.218
[40] Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology, 45(21), 9175–9179. https://doi.org/10.1021/es201811s
[41] Wei, Y., Meng, W., Wang, Y., Gao, Y., Qi, K., & Zhang, K. (2017). Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts. International Journal of Hydrogen Energy, 42(9), 6072–6079. https://doi.org/10.1016/j.ijhydene.2016.11.183
[42] Aijaz, A., Masa, J., Rösler, C., Xia, W., Weide, P., Botz, A. J., ... Muhler, M. (2016). Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angewandte Chemie International Edition, 55(12), 4087–4091. https://doi.org/10.1002/anie.201509382
[43] Mu, X., Gong, L., Yang, G., Xiong, Y., Wan, J., Zhu, J., & Li, R. (2022). Biomass-based transition metal phosphides supported on carbon matrix as efficient and stable electrocatalyst for hydrogen evolution reaction. International Journal of Energy Research, 46(3), 3502–3511. https://doi.org/10.1002/er.7377
[44] Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., ... Wang, C. (2019). Pyrolysis of microalgae: A critical review. Fuel Processing Technology, 186, 53–72. https://doi.org/10.1016/j.fuproc.2018.12.012
[45] Wu, H., Wang, L., Ji, G., Lei, H., Qu, H., Chen, J., ... Liu, J. (2020). Renewable production of nitrogen-containing compounds and hydrocarbons from catalytic microwave-assisted pyrolysis of chlorella over metal-doped HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 151, 104902. https://doi.org/10.1016/j.jaap.2020.104902
[46] Zhu, L., Hu, T., Li, S., Nugroho, Y. K., Li, B., Cao, J., ... Hiltunen, E. (2020). Effects of operating parameters on algae Chlorella vulgaris biomass harvesting and lipid extraction using metal sulfates as flocculants. Biomass and Bioenergy, 132, 105433. https://doi.org/10.1016/j.biombioe.2019.105433
[47] Wang, H., Shao, Y., Mei, S., Lu, Y., Zhang, M., Sun, J. K., ... Yuan, J. (2020). Polymer-derived heteroatom-doped porous carbon materials. Chemical Reviews, 120(17), 9363–9419. https://doi.org/10.1021/acs.chemrev.0c00080
[48] Liu, H., Gao, F., Ko, S., Luo, N., Tang, X., Yi, H., & Zhou, Y. (2023). Synthesis process and efficient NH3-SCR performance of alkali/alkaline earth metal-rich Chlorella@Mn catalyst. Applied Catalysis B: Environmental, 330, 122651. https://doi.org/10.1016/j.apcatb.2023.122651
[49] Saka, C. (2021). Metal-free catalysts with phosphorus and oxygen doped on carbon-based on Chlorella vulgaris microalgae for hydrogen generation via sodium borohydride methanolysis reaction. International Journal of Hydrogen Energy, 46(7), 5150–5157. https://doi.org/10.1016/j.ijhydene.2020.11.010
[50] Rad, D. M., Rad, M. A., Bazaz, S. R., Kashaninejad, N., Jin, D., & Warkiani, M. E. (2021). A comprehensive review on intracellular delivery. Advanced Materials, 33(13), 2005363. https://doi.org/10.1002/adma.202005363
[51] Zahoor, A., Christy, M., Hwang, Y. J., Lim, Y. R., Kim, P., & Nahm, K. S. (2014). Improved electrocatalytic activity of carbon materials by nitrogen doping. Applied Catalysis B: Environmental, 147, 633–641. https://doi.org/10.1016/j.apcatb.2013.09.047
[52] Li, W. J., Han, C., Cheng, G., Chou, S. L., Liu, H. K., & Dou, S. X. (2019). Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small, 15(32), 1900470. https://doi.org/10.1002/smll.201900470
[53] Yu, J., Cao, Q., Li, Y., Long, X., Yang, S., Clark, J. K., ... Delaunay, J. J. (2019). Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catalysis, 9(2), 1605–1611. https://doi.org/10.1021/acscatal.8b04231
[54] Wang, G., Deng, Y., Yu, J., Zheng, L., Du, L., Song, H., & Liao, S. (2017). From chlorella to nestlike framework constructed with doped carbon nanotubes: A biomass-derived, high-performance, bifunctional oxygen reduction/evolution catalyst. ACS Applied Materials & Interfaces, 9(37), 32168–32178. https://doi.org/10.1021/acsami.7b09145
[55] Tang, C., Wang, H. F., & Zhang, Q. (2018). Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Accounts of Chemical Research, 51(4), 881–889. https://doi.org/10.1021/acs.accounts.7b00616
[56] Liu, L., Zhu, Y. P., Su, M., & Yuan, Z. Y. (2015). Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem, 7(18), 2765–2787. https://doi.org/10.1002/cctc.201500447
[57] Stamenkovic, V. R., Strmcnik, D., Lopes, P. P., & Markovic, N. M. (2017). Energy and fuels from electrochemical interfaces. Nature Materials, 16(1), 57–69. https://doi.org/10.1038/nmat4738


This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).