Mechanism and Research Progress of Mitochondrial Quality Control in Osteoarthritis

  • Yan Li Shaanxi University of Chinese Medicine, China
  • Jiushe Kou The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, China
Keywords: osteoarthritis, mitochondrial quality control, mitochondrial biogenesis, mitochondrial autophagy, mitochondrial dynamics

Abstract

Osteoarthritis (OA) is a chronic disease characterized by degenerative lesions of articular cartilage, which is characterized by cartilage degeneration, bone redundancy formation and synovial inflammation. Recent studies have found that mitochondrial dysfunction is closely related to the development of OA. Mitochondrial quality control (MQC) mechanisms, including mitochondrial biogenesis, mitochondrial dynamics and mitochondrial autophagy, are essential for maintaining mitochondrial function. Therefore, targeted regulation of mitochondrial quality control is a promising therapeutic strategy. This article reviews the mechanism of MQC and its relationship with OA, as well as the research progress of targeting and regulating MQC to prevent and treat OA, aiming to provide a theoretical basis for the pathogenesis and preventive strategies of OA.

References

[1] Vina, E. R., & Kwoh, C. K. (2018). Epidemiology of osteoarthritis: Literature update. Current Opinion in Rheumatology, 30(2), 160–167. https://doi.org/10.1097/BOR.0000000000000479
[2] Mao, X., Fu, P., Wang, L., et al. (2020). Mitochondria: Potential targets for osteoarthritis. Frontiers in Medicine, 7, 581402. https://doi.org/10.3389/fmed.2020.581402
[3] Bolduc, J. A., Collins, J. A., & Loeser, R. F. (2019). Reactive oxygen species, aging and articular cartilage homeostasis. Free Radical Biology and Medicine, 132, 73–82. https://doi.org/10.1016/j.freeradbiomed.2018.08.038
[4] Early, J. O., Fagan, L. E., Curtis, A. M., et al. (2021). Mitochondria in injury, inflammation and disease of articular skeletal joints. Frontiers in Immunology, 12, 695257. https://doi.org/10.3389/fimmu.2021.695257
[5] Kang, C., & Li, Ji, L. (2012). Role of PGC-1α signaling in skeletal muscle health and disease. Annals of the New York Academy of Sciences, 1271(1), 110–117. https://doi.org/10.1111/j.1749-6632.2012.06738.x
[6] Yao, Q., Wu, X., Tao, C., et al. (2023). Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 56. https://doi.org/10.1038/s41392-023-01330-w
[7] Cantó, C., & Auwerx, J. (2009). PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology, 20(2), 98–105. https://doi.org/10.1097/MOL.0b013e328328d0a4
[8] Yang, Q., Shi, Y., Jin, T., et al. (2022). Advanced glycation end products induced mitochondrial dysfunction of chondrocytes through repression of AMPKα-SIRT1-PGC-1α pathway. Pharmacology, 107(5–6), 298–307. https://doi.org/10.1159/000521720
[9] Wang, Y., Zhao, X., Lotz, M., et al. (2015). Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator–activated receptor γ coactivator 1α. Arthritis & Rheumatology, 67(8), 2141–2153. https://doi.org/10.1002/art.39182
[10] Qiu, L., Luo, Y., & Chen, X. (2018). Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomedicine & Pharmacotherapy, 103, 1585–1591. https://doi.org/10.1016/j.biopha.2018.05.003
[11] De la Rosa, A., Olaso-Gonzalez, G., Garcia-Dominguez, E., et al. (2022). Glucosamine supplementation improves physical performance in trained mice. Medicine and Science in Sports and Exercise, 54(3), 466–474. https://doi.org/10.1249/MSS.0000000000002821
[12] Ma, C. H., Chiu, Y. C., Wu, C. H., et al. (2018). Homocysteine causes dysfunction of chondrocytes and oxidative stress through repression of SIRT1/AMPK pathway: A possible link between hyperhomocysteinemia and osteoarthritis. Redox Biology, 15, 504–512. https://doi.org/10.1016/j.redox.2018.01.010
[13] Sun, J., Song, F. H., Wu, J. Y., et al. (2022). Sestrin2 overexpression attenuates osteoarthritis pain via induction of AMPK/PGC-1α-mediated mitochondrial biogenesis and suppression of neuroinflammation. Brain, Behavior, and Immunity, 102, 53–70. https://doi.org/10.1016/j.bbi.2022.02.015
[14] Chen, L. Y., Wang, Y., Terkeltaub, R., et al. (2018). Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis and Cartilage, 26(11), 1539–1550. https://doi.org/10.1016/j.joca.2018.07.004
[15] Ajmal, I., Farooq, M. A., Abbas, S. Q., et al. (2022). Isoprenaline and salbutamol inhibit pyroptosis and promote mitochondrial biogenesis in arthritic chondrocytes by downregulating β-arrestin and GRK2. Frontiers in Pharmacology, 13, 996321. https://doi.org/10.3389/fphar.2022.996321
[16] Masuda, I., Koike, M., Nakashima, S., et al. (2018). Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Scientific Reports, 8(1), 7229. https://doi.org/10.1038/s41598-018-25348-1
[17] Jin, J. Y., Wei, X. X., Zhi, X. L., et al. (2021). Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacologica Sinica, 42(5), 655–664. https://doi.org/10.1038/s41401-020-00518-y
[18] Tilokani, L., Nagashima, S., Paupe, V., et al. (2018). Mitochondrial dynamics: Overview of molecular mechanisms. Essays in Biochemistry, 62(3), 341–360. https://doi.org/10.1042/EBC20170104
[19] Hu, C., Huang, Y., & Li, L. (2017). Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. International Journal of Molecular Sciences, 18(1), 144. https://doi.org/10.3390/ijms18010144
[20] Basu, K., Lajoie, D., Aumentado-Armstrong, T., et al. (2017). Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. PLOS ONE, 12(6), e0179397. https://doi.org/10.1371/journal.pone.0179397
[21] Court, A. C., Vega-Letter, A. M., Parra-Crisóstomo, E., et al. (2024). Mitochondrial transfer balances cell redox, energy and metabolic homeostasis in the osteoarthritic chondrocyte preserving cartilage integrity. Theranostics, 14(17), 6471–6486. https://doi.org/10.7150/thno.96723
[22] Shi, G., Lan, S., Zhang, Q., et al. (2025). Molybdenum nanodots act as antioxidants for photothermal therapy osteoarthritis. Biomaterials, 315, 122909. https://doi.org/10.1016/j.biomaterials.2024.122909
[23] Ansari, M. Y., Novak, K., & Haqqi, T. M. (2022). ERK1/2-mediated activation of DRP1 regulates mitochondrial dynamics and apoptosis in chondrocytes. Osteoarthritis and Cartilage, 30(2), 315–328. https://doi.org/10.1016/j.joca.2021.11.003
[24] Hu, S., Mamun, A. A., Shaw, J., et al. (2023). TBK1-medicated DRP1 phosphorylation orchestrates mitochondrial dynamics and autophagy activation in osteoarthritis. Acta Pharmacologica Sinica, 44(3), 610–621. https://doi.org/10.1038/s41401-022-00967-7
[25] Risbud, M., Madhu, V., Hernandez-Meadows, M., et al. (2024). The loss of OPA1 accelerates intervertebral disc degeneration and osteoarthritis in aged mice. https://doi.org/10.21203/rs.3.rs-3950044/v1
[26] Moqbel, S. A. A., Zeng, R., Ma, D., et al. (2022). The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway. Stem Cell Research & Therapy, 13(1), 127. https://doi.org/10.1186/s13287-022-02758-7
[27] Yao, X., Zhang, J., Jing, X., et al. (2019). Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacological Research, 139, 314–324. https://doi.org/10.1016/j.phrs.2018.09.026
[28] Tolkovsky, A. M. (2009). Mitophagy. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1793(9), 1508–1515. https://doi.org/10.1016/j.bbamcr.2009.03.002
[29] Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9–14. https://doi.org/10.1038/nrm3028
[30] Okatsu, K., Uno, M., Koyano, F., et al. (2013). A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. Journal of Biological Chemistry, 288(51), 36372–36384. https://doi.org/10.1074/jbc.M113.509653
[31] Sun, K., Jing, X., Guo, J., et al. (2021). Mitophagy in degenerative joint diseases. Autophagy, 17(9), 2082–2092. https://doi.org/10.1080/15548627.2020.1822097
[32] Ye, H., Cai, T., Shen, Y., et al. (2024). MST1 knockdown inhibits osteoarthritis progression through Parkin-mediated mitophagy and Nrf2/NF-κB signalling pathway. Journal of Cellular and Molecular Medicine, 28(11), e18476. https://doi.org/10.1111/jcmm.18476
[33] Li, W., Zhong, Y., Lin, Z., et al. (2024). Forsythoside A mitigates osteoarthritis and inhibits chondrocyte senescence by promoting mitophagy and suppressing NLRP3 inflammasome via the Nrf2 pathway. Phytomedicine, 135, 156052. https://doi.org/10.1016/j.phymed.2024.156052
[34] Kong, X., Ning, C., Liang, Z., et al. (2024). Koumine inhibits IL-1β-induced chondrocyte inflammation and ameliorates extracellular matrix degradation in osteoarthritic cartilage through activation of PINK1/Parkin-mediated mitochondrial autophagy. Biomedicine & Pharmacotherapy, 173, 116273. https://doi.org/10.1016/j.biopha.2024.116273
[35] D’Amico, D., Olmer, M., Fouassier, A. M., et al. (2022). Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell, 21(8), e13662. https://doi.org/10.1111/acel.13662
[36] Liu, L., Zhang, W., Liu, T., et al. (2023). The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biology, 62, 102663. https://doi.org/10.1016/j.redox.2023.102663
[37] Shi, P. B., Du, M. M., Yu, P., et al. (2025). Yanghe decoction alleviates osteoarthritis by AMPK-SIRT3 positive feedback loop-mediated mitochondrial autophagy. Journal of Ethnopharmacology, 341, 119294. https://doi.org/10.1016/j.jep.2024.119294
[38] Xin, R., Xu, Y., Long, D., et al. (2022). Mitochonic acid-5 inhibits reactive oxygen species production and improves human chondrocyte survival by upregulating SIRT3-mediated, Parkin-dependent mitophagy. Frontiers in Pharmacology, 13, 911716. https://doi.org/10.3389/fphar.2022.911716
[39] Xia, X., Liu, Y., Lu, Y., et al. (2023). Retuning mitochondrial apoptosis/mitophagy balance via SIRT3-energized and microenvironment-modulated hydrogel microspheres to impede osteoarthritis. Advanced Healthcare Materials, 12(32), e2302475. https://doi.org/10.1002/adhm.202302475
[40] Wang, C., Yang, Y., Zhang, Y., et al. (2018). Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. BioScience Trends, 12(6), 605–612. https://doi.org/10.5582/bst.2018.01263
[41] Mei, R., Lou, P., You, G., et al. (2021). 17β-Estradiol induces mitophagy upregulation to protect chondrocytes via the SIRT1-mediated AMPK/mTOR signaling pathway. Frontiers in Endocrinology, 11, 615250. https://doi.org/10.3389/fendo.2020.615250
[42] Yang, J., Zhou, Z., Ding, X., et al. (2024). Gubi Zhitong formula alleviates osteoarthritis in vitro and in vivo via regulating BNIP3L-mediated mitophagy. Phytomedicine, 128, 155279. https://doi.org/10.1016/j.phymed.2023.155279
[43] Hu, S., Zhang, C., Ni, L., et al. (2020). Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death & Disease, 11(6), 481. https://doi.org/10.1038/s41419-020-2680-0
[44] Fang, G., Wen, X., Jiang, Z., et al. (2023). FUNDC1/PFKP-mediated mitophagy induced by KD025 ameliorates cartilage degeneration in osteoarthritis. Molecular Therapy, 31(12), 3594–3612. https://doi.org/10.1016/j.ymthe.2023.10.016
[45] Ye, H., Li, D., Wei, X., et al. (2023). Focused low-intensity pulsed ultrasound alleviates osteoarthritis via restoring impaired FUNDC1-mediated mitophagy. iScience, 26(10), 107772. https://doi.org/10.1016/j.isci.2023.107772
[46] Shin, H. J., Park, H., Shin, N., et al. (2019). Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. Journal of Clinical Medicine, 8(11), 1849. https://doi.org/10.3390/jcm8111849
[47] Kobayashi, M., Harada, S., Fujimoto, N., et al. (2022). Apple polyphenols exhibit chondroprotective changes of synovium and prevent knee osteoarthritis. Biochemical and Biophysical Research Communications, 614, 120–124. https://doi.org/10.1016/j.bbrc.2022.05.016
[48] Wang, L., Shan, H., Wang, B., et al. (2018). Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology, 102(3–4), 117–125. https://doi.org/10.1159/000490418
[49] Chen, X., Huang, C., Sun, H., et al. (2021). Puerarin suppresses inflammation and ECM degradation through Nrf2/HO-1 axis in chondrocytes and alleviates pain symptom in osteoarthritic mice. Food & Function, 12(5), 2075–2089. https://doi.org/10.1039/D0FO03076G
[50] Gao, S. J., Li, D. Y., Liu, D. Q., et al. (2022). Dimethyl fumarate attenuates pain behaviors in osteoarthritis rats via induction of Nrf2-mediated mitochondrial biogenesis. Molecular Pain, 18, 17448069221124920. https://doi.org/10.1177/17448069221124920
[51] Ma, C. H., Chou, W. C., Wu, C. H., et al. (2021). Ginsenoside Rg3 attenuates TNF-α-induced damage in chondrocytes through regulating SIRT1-mediated anti-apoptotic and anti-inflammatory mechanisms. Antioxidants, 10(12), 1972. https://doi.org/10.3390/antiox10121972
[52] Yi, N., Mi, Y., Xu, X., et al. (2022). Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. International Immunopharmacology, 113, 109349. https://doi.org/10.1016/j.intimp.2022.109349
[53] Wang, F. S., Kuo, C. W., Ko, J. Y., et al. (2020). Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants, 9(9), 810. https://doi.org/10.3390/antiox9090810
[54] Hu, F., Hu, W., & Xu, H. (2024). Schisandrin B alleviates LPS induced mitochondrial damage in C28I2 cells. The Journal of Membrane Biology, 257(1–2), 107–114. https://doi.org/10.1007/s00232-023-00299-5
[55] Kan, S., Pi, C., Zhang, L., et al. (2023). FGF19 increases mitochondrial biogenesis and fusion in chondrocytes via the AMPKα-p38/MAPK pathway. Cell Communication and Signaling, 21(1), 55. https://doi.org/10.1186/s12964-023-01069-5
[56] Jin, Z., Chang, B., Wei, Y., et al. (2022). Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomedicine & Pharmacotherapy, 151, 113092. https://doi.org/10.1016/j.biopha.2022.113092
[57] Zhuang, H., Ren, X., Zhang, Y., et al. (2024). β-Hydroxybutyrate enhances chondrocyte mitophagy and reduces cartilage degeneration in osteoarthritis via the HCAR2/AMPK/PINK1/Parkin pathway. Aging Cell, 23(11), e14294. https://doi.org/10.1111/acel.14294
[58] Jie, L., Shi, X., Kang, J., et al. (2024). Protocatechuic aldehyde attenuates chondrocyte senescence via the regulation of PTEN-induced kinase 1/Parkin-mediated mitochondrial autophagy. International Journal of Immunopathology and Pharmacology, 38, 03946320241271724. https://doi.org/10.1177/03946320241271724
[59] Deng, Z., Long, D., Li, C., et al. (2024). IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2. Bone Research, 12(1), 63. https://doi.org/10.1038/s41413-024-00363-3
[60] Xing, L., Chen, X., Guo, C., et al. (2023). Electroacupuncture exerts chondroprotective effect in knee osteoarthritis of rabbits through the mitophagy pathway. Journal of Pain Research, 16, 2871–2882. https://doi.org/10.2147/JPR.S416242
[61] Xue, X., Dai, T., Chen, J., et al. (2023). PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. Journal of Orthopaedic Surgery and Research, 18(1), 620. https://doi.org/10.1186/s13018-023-04092-x
[62] Lu, R., He, Z., Zhang, W., et al. (2022). Oroxin B alleviates osteoarthritis through anti-inflammation and inhibition of PI3K/AKT/mTOR signaling pathway and enhancement of autophagy. Frontiers in Endocrinology, 13, 1060721. https://doi.org/10.3389/fendo.2022.1060721
[63] He, J., & He, J. (2023). Baicalin mitigated IL-1β-induced osteoarthritis chondrocytes damage through activating mitophagy. Chemical Biology & Drug Design, 101(6), 1322–1334. https://doi.org/10.1111/cbdd.14215
Published
2025-07-22
Section
Articles