Index of Independence

  • Ilija Barukčić Internist, Germany
Keywords: study design, study type, measuring technique, publication bias

Abstract

Objective. Under certain circumstances, the results of multiple investigations – particularly, rigorously-designed trials, can be summarized by systematic reviews and meta-analyses. However, the results of properly conducted meta-analyses can but need not be stronger than single investigations, if (publication) bias is not considered to a necessary extent.

Methods. In assessing the significance of publication bias due to study design simple to handle statistical measures for quantifying publication bias are developed and discussed which can be used as a characteristic of a meta-analysis. In addition, these measures may permit comparisons of publication biases between different meta-analyses.

Results. Various properties and the performance of the new measures of publication bias are studied and illustrated using simulations and clearly described thought experiments. As a result, individual studies can be reviewed with a higher degree of certainty.

Conclusions. Publication bias due to study design is a serious problem in scientific research, which can affect the validity and generalization of conclusions. The index of unfairness and the index of independence are of use to quantify publication bias and to improve the quality of systematic reviews and meta-analyses.

References

Altman, D. G. (1999). Practical statistics for medical research. Boca Raton, Fla: Chapman & Hall/CRC.
Arbuthnott, J. (1710). An Argument for Divine Providence, Taken from the Constant Regularity Observ’d in the Births of Both Sexes. By Dr. John Arbuthnott, Physitian in Ordinary to Her Majesty, and Fellow of the College of Physitians and the Royal Society. Philosophical Transactions of the Royal Society of London, 27(325-336), 186-190. https://doi.org/10.1098/rstl.1710.0011
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 452-454. https://doi.org/10.1038/533452a
Barukčić I. (2019). Smoking of tobacco is the cause of human lung cancer. Journal of Drug Delivery and Therapeutics, 9(1-s), 148-160. https://doi.org/10.22270/jddt.v9i1-s.2273
Barukčić, I. (1989). Die Kausalität (1. Aufl.). Hamburg: Wiss.-Verl.
Barukčić, I. (1997). Die Kausalität (2., völlig überarb. Aufl.). Wilhelmshaven: Scientia.
Barukčić, I. (2005). Causality: New statistical methods. Norderstedt, Germany: Books on Demand GmbH.
Barukčić, I. (2006a). Causality: New statistical methods (2. Aufl.). Norderstedt: Books on Demand.
Barukčić, I. (2006b). New Method for Calculating Causal Relationships. Retrieved from http://www.medicine.mcgill.ca/epidemiology/hanley/ibc2006program.pdf
Barukčić, I. (2009a). Causality I. A theory of energy, time and space (5. ed., 14. rev).
Barukčić, I. (2009b). Causality II. A theory of energy, time and space (5. ed., 13. rev).
Barukčić, I. (2011a). Anti Heisenberg-Refutation Of Heisenberg’s Uncertainty Relation: In: ADVANCES IN QUANTUM THEORY: Proceedings of the International Conference on Advances in Quantum Theory, Växjö, (Sweden), 14-17 June 2010. In American Institute of Physics - Conference Proceedings (Vol. 1327, pp. 322–325). https://doi.org/10.1063/1.3567453
Barukčić, I. (2011b). The Equivalence of Time and Gravitational Field. Physics Procedia, 22, 56-62. https://doi.org/10.1016/j.phpro.2011.11.008
Barukčić, I. (2012). Anti-Bell - Refutation of Bell’s theorem: In: Quantum Theory: Reconsideration of Foundations-6 (QTRF6), Växjö, (Sweden), 11-14 June 2012. In American Institute of Physics - Conference Proceedings (Vol. 1508, pp. 354-358). https://doi.org/10.1063/1.4773147
Barukčić, I. (2016a). The Mathematical Formula of the Causal Relationship k. International Journal of Applied Physics and Mathematics, 6(2), 45-65. https://doi.org/10.17706/ijapm.2016.6.2.45-65
Barukčić, I. (2016b). The Physical Meaning of the Wave Function. Journal of Applied Mathematics and Physics, 4(6), 988-1023. https://doi.org/10.4236/jamp.2016.46106
Barukčić, I. (2016c). Unified Field Theory. Journal of Applied Mathematics and Physics, 4(8), 1379-1438. https://doi.org/10.4236/jamp.2016.48147
Barukčić, I. (2017a). Helicobacter pylori—The Cause of Human Gastric Cancer. Journal of Biosciences and Medicines, 5(2), 1-9. https://doi.org/10.4236/jbm.2017.52001
Barukčić, I. (2017b). Theoriae causalitatis principia mathematica. Norderstedt: Books on Demand.
Barukčić, I. (2018a). Epstein Bar Virus—The Cause of Hodgkin’s Lymphoma. Journal of Biosciences and Medicines, 6(1), 75-100. https://doi.org/10.4236/jbm.2018.61008
Barukčić, I. (2018b). Fusobacterium nucleatum—The Cause of Human Colorectal Cancer. Journal of Biosciences and Medicines, 6(3), 31-69. https://doi.org/10.4236/jbm.2018.63004
Barukčić, I. (2018c). Gastric Cancer and Epstein-Barr Virus Infection. Modern Health Science, 1(2), 1-18. https://doi.org/10.30560/mhs.v1n2p1
Barukčić, I. (2018d). Helicobacter Pylori is the Cause of Gastric Cancer. Modern Health Science, 1(1), 43-50. https://doi.org/10.30560/mhs.v1n1p43
Barukčić, I. (2018e). Human Cytomegalovirus is the Cause of Glioblastoma Multiforme. Modern Health Science, 1(2), 19. https://doi.org/10.30560/mhs.v1n2p19
Barukčić, I. (2018f). Human Papillomavirus—The Cause of Human Cervical Cancer. Journal of Biosciences and Medicines, 6(4), 106–125. https://doi.org/10.4236/jbm.2018.64009
Barukčić, I. (2018g). Mycobacterium Avium Subspecies Paratuberculosis: The Cause Of Crohn’s Disease. Modern Health Science, 1(1), 19–34. https://doi.org/10.30560/mhs.v1n1p19
Barukčić, I. (2018h). Epstein-Barr virus is the cause of multiple sclerosis. International Journal of Current Medical and Pharmaceutical Research, 4(9(A)), 3674-3682. http://dx.doi.org/10.24327/23956429.ijcmpr20180538
Barukčić, K., Barukčić, J. P., & Barukčić, I. (2018). Epstein-Barr virus is the cause of rheumatoid arthritis. Romanian Journal of Rheumatology, 27(4), 148-163.
Bernoulli, J. (1713). Ars conjectandi, Opus posthumus: Accedit Tractatus de seriebus infinitis ; et epistola Gallice scripta De Ludo Pilae Reticularis. Basileae (Basel, Suisse): Impensis Thurnisiorum [Tournes], fratrum. https://doi.org/10.3931/e-rara-9001
Bienaymé, I.-J. (1846). Sur les probabilités des erreurs d’après la méthode des moindres carrés. Journal De Mathématiques Pures Et Appliquées, 1(17), 33-78.
Bortkiewicz, L. (Ed.). (1898). Das Gesetz der kleinen Zahlen: [Transl. into English: The law of small numbers]. Leipzig (Germany): B.G. Teubner. Retrieved from https://ia802308.us.archive.org/33/items/dasgesetzderklei00bortrich/dasgesetzderklei00bortrich.pdf
Charan, J.,& Biswas, T. (2013). How to calculate sample size for different study designs in medical research? Indian Journal of Psychological Medicine, 35(121). https://doi.org/10.4103/0253-7176.116232
Conover, W. J. (1974). Some Reasons for Not Using the Yates Continuity Correction on 2×2 Contingency Tables. Journal of the American Statistical Association, 69(346), 374-376. https://doi.org/10.1080/01621459.1974.10482957
Cornfield, J. (1951). A method of estimating comparative rates from clinical data; applications to cancer of the lung, breast, and cervix. Journal of the National Cancer Institute, 11(6), 1269-1275.
DeGroot, M. H., Schervish, M. J., Fang, X., Lu, L., & Li, D. (2005). Probability and Statistics (Third Edition [Rep. & arr. ed.]). Beijing (China): Higher Education Press.
Dorey, F. (2010). In Brief: The P Value: What Is It and What Does It Tell You? Clinical Orthopaedics and Related Research, 468(8), 2297-2298. https://doi.org/10.1007/s11999-010-1402-9
Edwards, A. W. F. (1963). The Measure of Association in a 2 × 2 Table. Journal of the Royal Statistical Society. Series A (General), 126(1), 109. https://doi.org/10.2307/2982448
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629-634. https://doi.org/10.1136/bmj.315.7109.629
Fisher, R. A. (1922). On the Interpretation of χ 2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society, 85(1), 87. https://doi.org/10.2307/2340521
Fisher, R. A. (1935). The Logic of Inductive Inference. Journal of the Royal Statistical Society, 98(1), 39. https://doi.org/10.2307/2342435
Fisher, Ronald A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. Retrieved from http://www.haghish.com/resources/materials/Statistical_Methods_for_Research_Workers.pdf
Gomes, G. (2009). Are Necessary and Sufficient Conditions Converse Relations. Australasian Journal of Philosophy, 87, 375-387. https://doi.org/10.1080/00048400802587325
Gonin, H. T. (1936). XIV. The use of factorial moments in the treatment of the hypergeometric distribution and in tests for regression. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(139), 215-226. https://doi.org/10.1080/14786443608561573
Grimes, D. A., & Schulz, K. F. (2002). Bias and causal associations in observational research. Lancet (London, England), 359(9302), 248-252. https://doi.org/10.1016/S0140-6736(02)07451-2
Grizzle, J. E. (1967). Continuity Correction in the χ 2 -Test for 2 × 2 Tables. The American Statistician, 21(4), 28. https://doi.org/10.2307/2682103
Hanley, J. A. (1983). If Nothing Goes Wrong, Is Everything All Right? JAMA, 249(13), 1743.
Hogg, R. V., & Craig, A. T. (2004). Introduction to Mathematical Statistics. Beijing: Higher Education Press.
Hopewell, S., Loudon, K., Clarke, M. J., Oxman, A. D., & Dickersin, K. (2009a). Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database of Systematic Reviews, (1). https://doi.org/10.1002/14651858.MR000006.pub3
Hume, D. (1739). David Hume: A Treatise of Human Nature (Second Edition). Oxford University Press. https://doi.org/10.1093/actrade/9780198245872.book.1
Hunter, J. P., Saratzis, A., Sutton, A. J., Boucher, R. H., Sayers, R. D., & Bown, M. J. (2014). In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. Journal of Clinical Epidemiology, 67(8), 897-903. https://doi.org/10.1016/j.jclinepi.2014.03.003
Huygens, C. (1629-1695), & van Schooten, F. (1615-1660). (1657). De ratiociniis in ludo alae: In: Exercitationum mathematicarum liber primus [- quintus]. Lugdunum Batavorum (Leiden, The Netherlands): ex officina Johannis Elsevirii. https://doi.org/10.3931/e-rara-8813
Isserlis, L. (1918). On the Value of a Mean as Calculated from a Sample. Journal of the Royal Statistical Society, 81(1), 75. https://doi.org/10.2307/2340569
Joober, R., Schmitz, N., Annable, L., & Boksa, P. (2012). Publication bias: What are the challenges and can they be overcome? Journal of Psychiatry & Neuroscience, 37(3), 149-152. https://doi.org/10.1503/jpn.120065
Jovanovic, B. D., & Levy, P. S. (1997). A Look at the Rule of Three. The American Statistician, 51(2), 137-139.
Kaplan, R. M., Chambers, D. A., & Glasgow, R. E. (2014). Big Data and Large Sample Size: A Cautionary Note on the Potential for Bias. Clinical and Translational Science, 7(4), 342-346. https://doi.org/10.1111/cts.12178
Kleijnen, J., & Knipschild, P. (1992). Review articles and publication bias. Arzneimittelforschung, 45(2), 587-591.
Kolmogoroff, A. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-49888-6
LaPlace, Pierre Simon de. (1812). Théorie analytique des probabilités. Paris (France): Courcier. https://doi.org/10.3931/e-rara-9457
Lau, J., Ioannidis, J. P. A., Terrin, N., Schmid, C. H., & Olkin, I. (2006). The case of the misleading funnel plot. BMJ, 333(7568), 597-600. https://doi.org/10.1136/bmj.333.7568.597
Light, R. J., & Pillemer, D. B. (1984). Summing up. The science of reviewing research. Cambridge, Mass., USA: Harvard University Press.
Louis, T. A. (1981). Confidence Intervals for a Binomial Parameter after Observing No Successes. The American Statistician, 35(3), 154-154.
Lyapunov, A. M. (1901). Nouvelle forme du théorème sur la limite de probabilité. Mémoires de l’Académie Impériale Des Sciences de St.-Pétersbourg. Série VIIIe. Classe Physico-Mathématique, 12, 1-24.
Moher, D., Dulberg, C. S., & Wells, G. A. (1994). Statistical Power, Sample Size, and Their Reporting in Randomized Controlled Trials. JAMA: The Journal of the American Medical Association, 272(2), 122. https://doi.org/10.1001/jama.1994.03520020048013
Moivre, A. (1733). Approximatio ad summam terminorum binomii (a+b)n in seriem expansi. London: Privately (Publisher not identified). Retrieved from https://www.york.ac.uk/depts/maths/histstat/demoivre.pdf
Moivre, A. de [1667-1754]. (1718). The Doctrine of Chances or a Method of Calculating the Probability of Events in Play. London: printed by W. Pearson for the author. https://doi.org/10.3931/e-rara-10420
Mosteller, F. (1968). Association and Estimation in Contingency Tables. Journal of the American Statistical Association, 63(321), 1. https://doi.org/10.2307/2283825
Murad, M. H., Chu, H., Lin, L., & Wang, Z. (2018). The effect of publication bias magnitude and direction on the certainty in evidence. BMJ Evidence-Based Medicine, 23(3), 84-86. https://doi.org/10.1136/bmjebm-2018-110891
Noordzij, M., Dekker, F. W., Zoccali, C., & Jager, K. J. (2010). Measures of Disease Frequency: Prevalence and Incidence. Nephron Clinical Practice, 115, c17-c20. https://doi.org10.1159/000286345
Pagano, M., & Gauvreau, K. (2018). Principles of Biostatistics (2nd ed.). Milton: CRC Press. Retrieved from https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=5301930
Panagiotakos, D. B. (2008). The Value of p-Value in Biomedical Research. The Open Cardiovascular Medicine Journal, 2, 97-99. https://doi.org/10.2174/1874192400802010097
Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175. https://doi.org/10.1080/14786440009463897
Pearson, K., & Heron, D. (1913). On Theories of Association. Biometrika, 9(1-2), 159-315. https://doi.org/10.1093/biomet/9.1-2.159
Pearson, Karl. (1899). XV. On certain properties of the hypergeometrical series, and on the fitting of such series to observation polygons in the theory of chance. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(285), 236-246. https://doi.org/10.1080/14786449908621253
Poisson, S. D. (1837). Recherches sur la Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilitiés. Paris, France: Bachelier. Retrieved from https://www-liphy.ujf-grenoble.fr/pagesperso/bahram/Phys_Stat/Biblio/Poisson_Proba_1838.pdf
Pólya, G. (1920). Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem: [In English: On the central limit theorem of probability calculation and the problem of moments]. Mathematische Zeitschrift, 8(3-4), 171-181. https://doi.org/10.1007/BF01206525
Quine, M. P., & Robinson, J. (1985). Efficiencies of Chi-Square and Likelihood Ratio Goodness-of-Fit Tests. The Annals of Statistics, 13(2), 727-742. https://doi.org/10.1214/aos/1176349550
Rahme, E., & Joseph, L. (1998). Exact sample size determination for binomial experiments. Journal of Statistical Planning and Inference, 66, 83-93. https://doi.org/10.1016/S0378-3758(97)00068-2
Retrieved from http://www.archive.org/stream/oeuvresphilosoph00leibuoft#page/n9/mode/2up
Rumke, C. L. (1975). Implications of the Statement: No Side Effects Were Observed. The New England Journal of Medicine, 292(7), 372-373. https://doi.org/10.1056/NEJM197502132920723
Sachs, L. (1992). Angewandte Statistik. Berlin, Heidelberg: Springer Berlin Heidelberg.
Scheid, H. (1992). Wahrscheinlichkeitsrechnung (Vol. 6). Mannheim: BI-Wiss.-Verl.
Schervish, M. J. (1996). P Values: What They are and What They are Not. The American Statistician, 50(3), 203-206. https://doi.org/10.1080/00031305.1996.10474380
Szumilas, M. (2010). Explaining Odds Ratios. J Can Acad Child Adolesc Psychiatry, 19, 227-229.
Tchébychef, P. L. (1867). Des valeurs moyennes. Journal de Mathématiques Pures et Appliquées, 2(12), 177-184.
von Leibniz, G. W. F. (1765). Oeuvres philosophiques latines & francoises de feu Mr. de Leibniz. Amsterdam (NL): Chez Jean Schreuder.
Warrens, M. J. (2008). On Association Coefficients for 2x2 Tables and Properties That Do Not Depend on the Marginal Distributions. Psychometrika, 73(4), 777-789. https://doi.org/10.1007/s11336-008-9070-3
Wertheimer, R. (1968). Conditions. Journal of Philosophy, 65, 355-364.
Yates, F. (1934). Contingency Tables Involving Small Numbers and the χ 2 Test. The Journal of the Royal Statistical Society (Supplement), 1(2), 217-235. https://doi.org/10.2307/2983604
Yule, G. U. (1900). On the Association of Attributes in Statistics: With Illustrations from the Material of the Childhood Society, &c. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 194(252-261), 257-319. https://doi.org/10.1098/rsta.1900.0019
Zwetsloot, P. P., Van Der Naald, M., Sena, E. S., Howells, D. W., IntHout, J., De Groot, J. A., … Wever, K. E. (2017). Standardized mean differences cause funnel plot distortion in publication bias assessments. ELife, 6. https://doi.org/10.7554/eLife.24260
Published
2019-10-07
Section
Articles