Correlation Study Between Subclinical Hypothyroidism and Coronary Atherosclerotic Heart Disease
Abstract
Subclinical hypothyroidism (SCH) is recognized as a potential independent risk factor for coronary artery disease (CAD). This review systematically explores the association between SCH and CAD, examining mechanisms including atherogenesis, inflammatory responses, and interactions with traditional CAD risk factors. We found that varying TSH levels, sex, and the presence of comorbidities in patients with SCH are associated with the development and progression of CAD, though the underlying mechanisms remain unclear. While thyroid hormone replacement therapy can improve lipid profiles and endothelial function, the cardiovascular benefits regarding hard endpoints in patients with mild SCH (TSH<10 mIU/L) or in elderly populations require confirmation through large randomized controlled trials (RCTs). In conclusion, the association between SCH and CAD is multifactorial and synergistic, and clinical intervention should consider individualized TSH levels, age, and the presence of comorbidities.
References
[2] Hu, S. S. (2024). Epidemiology and current management of cardiovascular disease in China. Journal of Geriatric Cardiology, 21(4), 387–406. https://doi.org/10.26599/1671-5411.2024.04.001
[3] Peeters, R. P. (2017). Subclinical hypothyroidism. New England Journal of Medicine, 376(26), 2556–2565. https://doi.org/10.1056/NEJMcp1611144
[4] Ni, W., Zhang, M., Wang, X., et al. (2022). Age-specific serum thyrotropin reference range for the diagnosis of subclinical hypothyroidism and its association with lipid profiles in the elderly population. Scientific Reports, 12(1), 20872. https://doi.org/10.1038/s41598-022-24182-w
[5] Bekkering, G. E., Agoritsas, T., Lytvyn, L., et al. (2019). Thyroid hormones treatment for subclinical hypothyroidism: A clinical practice guideline. BMJ, l2006. https://doi.org/10.1136/bmj.l2006
[6] Ku, E. J., Yoo, W. S., & Chung, H. K. (2023). Management of subclinical hypothyroidism: A focus on proven health effects in the 2023 korean thyroid association guidelines. Endocrinology and Metabolism, 38(4), 381–391. https://doi.org/10.3803/EnM.2023.1778
[7] Gill, S., Cheed, V., Morton, V. A. H., et al. (2022). Evaluating the Progression to Hypothyroidism in Preconception Euthyroid Thyroid Peroxidase Antibody-Positive Women. Journal of Clinical Endocrinology & Metabolism, 108(1), 124–134. https://doi.org/10.1210/clinem/dgac525
[8] Patrizio, A., Ferrari, S. M., Elia, G., et al. (2024). Hypothyroidism and metabolic cardiovascular disease. Frontiers in Endocrinology, 15, 1408684. https://doi.org/10.3389/fendo.2024.1408684
[9] Cappola, A. R., Desai, A. S., Medici, M., et al. (2019). Thyroid and cardiovascular disease: Research agenda for enhancing knowledge, prevention, and treatment. Circulation, 29(6), 760–777. https://doi.org/10.1161/CIRCULATIONAHA.118.036859
[10] Swirski, F. K., & Nahrendorf, M. (2013). Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science, 339(6116), 161–166. https://doi.org/10.1126/science.1230719
[11] Johnson, J. L., & Newby, A. C. (2009). Macrophage heterogeneity in atherosclerotic plaques. Current Opinion in Lipidology, 20(5), 370–378. https://doi.org/10.1097/MOL.0b013e3283309848
[12] Yang, C., Lu, M., Chen, W., et al. (2019). Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. Journal of Experimental Medicine, 216(5), 1182–1198. https://doi.org/10.1084/jem.20181473
[13] Ohba, K., & Iwaki, T. (2022). Role of thyroid hormone in an experimental model of atherosclerosis: The potential mediating role of immune response and autophagy. Endocrine Journal, 69(9), 1043–1052. https://doi.org/10.1507/endocrj.EJ22-0177
[14] Torres, E. M., & Tellechea, M. L. (2025). Systematic review and meta-analyses of adipokine levels in hypothyroidism: A role for retinol-binding protein 4. Expert Review of Endocrinology & Metabolism, 20(1), 87–98. https://doi.org/10.1080/17446651.2024.2438231
[15] Elkholy, A., Efat, A., Shoeib, S., et al. (2025). Platelet indices and RDW to assess inflammatory milieu in subclinical hashimoto's thyroiditis. Clinical Medicine Insights: Endocrinology and Diabetes, 18, 11795514251349337. https://doi.org/10.1177/11795514251349337
[16] Medina-Leyte, D. J., Zepeda-García, O., Domínguez-Pérez, M., et al. (2021). Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. International Journal of Molecular Sciences, 22(8), 3850. https://doi.org/10.3390/ijms22083850
[17] Traub-Weidinger, T., Graf, S., Beheshti, M., et al. (2012). Coronary vasoreactivity in subjects with thyroid autoimmunity and subclinical hypothyroidism before and after supplementation with thyroxine. Thyroid, 22(3), 245–251. https://doi.org/10.1089/thy.2011.0183
[18] Knapp, M., Lisowska, A., Sobkowicz, B., et al. (2013). Myocardial perfusion and intima-media thickness in patients with subclinical hypothyroidism. Advances in Medical Sciences, 58(1), 44–49. https://doi.org/10.2478/v10039-012-0068-9
[19] Sara, J. D., Zhang, M., Gharib, H., et al. (2015). Hypothyroidism is associated with coronary endothelial dysfunction in women. Journal of the American Heart Association, 4(8), e002225. https://doi.org/10.1161/JAHA.115.002225
[20] Obradovic, M., Gluvic, Z., Sudar-Milovanovic, E., et al. (2016). Nitric oxide as a marker for levo-thyroxine therapy in subclinical hypothyroid patients. Current Vascular Pharmacology, 14(3), 266–270. https://doi.org/10.2174/1570161114666160208143537
[21] Viswanathan, G., Balasubramaniam, K., Hardy, R., et al. (2014). Blood thrombogenicity is independently associated with serum TSH levels in post-non-ST elevation acute coronary syndrome. Journal of Clinical Endocrinology and Metabolism, 99(6), E1050–E1054. https://doi.org/10.1210/jc.2013-3062
[22] Guo, W., Hou, L. Y., & Yi, X. (2025). Impact of subclinical hypothyroidism on coagulation parameters and coronary artery disease severity in patients with coronary heart disease. Cardiology, 1, 1–11. https://doi.org/10.1159/000545904
[23] Bytyçi, I., Shenouda, R., Wester, P., et al. (2021). Carotid atherosclerosis in predicting coronary artery disease: A systematic review and meta-analysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(4). https://doi.org/10.1161/ATVBAHA.120.315747
[24] Polak, J. F., Szklo, M., & O'Leary, D. H. (2017). Carotid intima-media thickness score, positive coronary artery calcium score, and incident coronary heart disease: The multi-ethnic study of atherosclerosis. Journal of the American Heart Association, 6(1), e004612. https://doi.org/10.1161/JAHA.116.004612
[25] Soto-García, A. J., Elizondo-Riojas, G., Rodriguez-Gutiérrez, R., et al. (2021). Carotid intima-media thickness in patients with subclinical hypothyroidism: A prospective controlled study. Clinical and Investigative Medicine, 44(4), E39–E45. https://doi.org/10.25011/cim.v44i4.37139
[26] Koc, A. (2023). Evaluation of the association of plasma pentraxin-3 levels with carotid intima-media thickness and high-sensitive CRP in patients with subclinical hypothyroidism. Acta Endocrinologica (Bucharest), 19(3), 286–291. https://doi.org/10.4183/aeb.2023.286
[27] Isailă, O. M., Stoian, V. E., Fulga, I., et al. (2024). The relationship between subclinical hypothyroidism and carotid intima-media thickness as a potential marker of cardiovascular risk: A systematic review and a meta-analysis. Journal of Cardiovascular Development and Disease, 11(4), 98. https://doi.org/10.3390/jcdd11040098
[28] Spilack, A. D. M., Goulart, A. C., De Almeida-Pititto, B., et al. (2023). The association of diabetes, subclinical hypothyroidism and carotid intima-media thickness: Results from the brazilian longitudinal study of adult health (ELSA-brazil). Clinics, 78, 100154. https://doi.org/10.1016/j.clinsp.2022.100154
[29] Cabral, M. D., Teixeira, P. F. S., Silva, N. A. O., et al. (2009). Normal flow-mediated vasodilatation of the brachial artery and carotid artery intima-media thickness in subclinical hypothyroidism. Brazilian Journal of Medical and Biological Research, 42(5), 426–432. https://doi.org/10.1590/S0100-879X2009000500005
[30] Posadas-Romero, C., Jorge-Galarza, E., Posadas-Sánchez, R., et al. (2014). Fatty liver largely explains associations of subclinical hypothyroidism with insulin resistance, metabolic syndrome, and subclinical coronary atherosclerosis. European Journal of Endocrinology, 171(3), 319–325. https://doi.org/10.1530/EJE-14-0150
[31] Silva, N., Santos, O., Morais, F., et al. (2014). Subclinical hypothyroidism represents an additional risk factor for coronary artery calcification, especially in subjects with intermediate and high cardiovascular risk scores. European Journal of Endocrinology, 171(3), 327–334. https://doi.org/10.1530/EJE-14-0031
[32] Park, Y. J., Lee, Y. J., Choi, S. I., et al. (2011). Impact of subclinical hypothyroidism on the coronary artery disease in apparently healthy subjects. European Journal of Endocrinology, 165(1), 115–121. https://doi.org/10.1530/EJE-11-0014
[33] Al Helali, S., Hanif, M. A., Alshugair, N., et al. (2023). Associations between hypothyroidism and subclinical atherosclerosis among male and female patients without clinical disease referred to computed tomography. Endocrine Practice, 29(12), 935–941. https://doi.org/10.1016/j.eprac.2023.08.012
[34] Kim, E. S., Shin, J. A., Shin, J. Y., et al. (2012). Association between low serum free thyroxine concentrations and coronary artery calcification in healthy euthyroid subjects. Thyroid, 22(9), 870–876. https://doi.org/10.1089/thy.2011.0366
[35] Zhou, X. Z., Shi, R., Wang, J., et al. (2021). Characteristics of coronary artery disease in patients with subclinical hypothyroidism: Evaluation using coronary artery computed tomography angiography. BMC Cardiovascular Disorders, 21(1), 303. https://doi.org/10.1186/s12872-021-02116-0
[36] Kebamo, T. E., Tantu, A., Solomon, Y., et al. (2025). A comparative study on serum lipid levels in patients with thyroid dysfunction: A single-center experience in Ethiopia. BMC Endocrine Disorders, 25(1), 47. https://doi.org/10.1186/s12902-025-01851-1
[37] Saric, M. S., Jurasic, M. J., Sovic, S., et al. (2017). Dyslipidemia in subclinical hypothyroidism requires assessment of small dense low density lipoprotein cholesterol (sdLDL-C). Romanian Journal of Internal Medicine, 55(3), 159–166. https://doi.org/10.1515/rjim-2017-0015
[38] Kalra, S., Aggarwal, S., & Khandelwal, D. (2021). Thyroid dysfunction and dysmetabolic syndrome: The need for enhanced thyrovigilance strategies. International Journal of Endocrinology, 2021, 1–11. https://doi.org/10.1155/2021/9641846
[39] Duntas, L. H., & Brenta, G. (2018). A renewed focus on the association between thyroid hormones and lipid metabolism. Frontiers in Endocrinology, 9, 511. https://doi.org/10.3389/fendo.2018.00511
[40] Liu, H., & Peng, D. (2022). Update on dyslipidemia in hypothyroidism: The mechanism of dyslipidemia in hypothyroidism. Endocrine Connections, 11(2), e210002. https://doi.org/10.1530/EC-21-0002
[41] Ritter, M. J., Amano, I., et al. (2020). Thyroid hormone signaling and the liver. Hepatology, 72(2), 742–752. https://doi.org/10.1002/hep.31296
[42] Chowdhury, S. R., Mandal, T. K., & Mukhopadhyay, P. (2024). A study correlating the effects of subclinical hypothyroidism on the known modifiable risk factors of coronary artery disease in Indian adults. Journal of the Association of Physicians of India, 72(12), 44–48. https://doi.org/10.59556/japi.72.0779
[43] Beukhof, C. M., Massolt, E. T., Visser, T. J., et al. (2018). Effects of thyrotropin on peripheral thyroid hormone metabolism and serum lipids. Thyroid, 28(2), 168–174. https://doi.org/10.1089/thy.2017.0330
[44] Peppa, M., Betsi, G., & Dimitriadis, G. (2011). Lipid abnormalities and cardiometabolic risk in patients with overt and subclinical thyroid disease. Journal of Lipids, 2011, 575840. https://doi.org/10.1155/2011/575840
[45] Wang, P., Zhang, W., & Liu, H. (2025). Research status of subclinical hypothyroidism promoting the development and progression of cardiovascular diseases. Frontiers in Cardiovascular Medicine, 12, 1527271. https://doi.org/10.3389/fcvm.2025.1527271
[46] Zhang, X., Song, Y., Feng, M., et al. (2015). Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. Journal of Lipid Research, 56(5), 963–971. https://doi.org/10.1194/jlr.M047654
[47] Fazaeli, M., Khoshdel, A., Shafiepour, M., et al. (2019). The influence of subclinical hypothyroidism on serum lipid profile, PCSK9 levels and CD36 expression on monocytes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(1), 312–316. https://doi.org/10.1016/j.dsx.2018.08.021
[48] Gong, Y., Ma, Y., Ye, Z., et al. (2017). Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism, 76, 32–41. https://doi.org/10.1016/j.metabol.2017.07.006
[49] Seo, C., Kim, S., Lee, M., et al. (2018). Thyroid hormone replacement reduces the risk of cardiovascular diseases in diabetic nephropathy patients with subclinical hypothyroidism. Endocrine Practice, 24(3), 265–272. https://doi.org/10.4158/EP-2017-0017
[50] Mahmud, N. M. M., Jagdewsing, D. R., Ji, X., et al. (2025). Association between different thyroid-stimulating hormone levels and macrovascular complications in subclinical hypothyroidism patients with type 2 diabetes mellitus. Cureus. https://doi.org/10.7759/cureus.79186
[51] Spilack, A. D. M., Goulart, A. C., Janovsky, C. C. P. S., et al. (2024). The impact of diabetes and subclinical hypothyroidism association with coronary artery calcium: Results from the brazilian longitudinal study of adult health (ELSA-brasil). Archives of Endocrinology and Metabolism, 68, e220375. https://doi.org/10.20945/2359-4292-2022-0375
[52] De Vries, T. I., Kappelle, L. J., et al. (2019). Thyroid-stimulating hormone levels in the normal range and incident type 2 diabetes mellitus. Acta Diabetologica, 56(4), 431–440. https://doi.org/10.1007/s00592-018-1231-y
[53] Biondi, B., Cappola, A. R., & Cooper, D. S. (2019). Subclinical hypothyroidism: A review. JAMA, 322(2), 153. https://doi.org/10.1001/jama.2019.9052
[54] Delitala, A. P., Scuteri, A., Maioli, M., et al. (2020). Subclinical hypothyroidism and cardiovascular risk factors. Minerva Medica, 110(6). https://doi.org/10.23736/S0026-4806.19.06292-X
[55] Rodondi, N., & Aujesky, D. (2010). Risk of coronary heart disease and mortality for adults with subclinical hypothyroidism. JAMA-Journal of The American Medical Association, 304(22), 2481–2482. https://doi.org/10.1001/jama.2010.1786
[56] Floriani, C., Gencer, B., Collet, T. H., et al. (2018). Subclinical thyroid dysfunction and cardiovascular diseases: 2016 update. European Heart Journal, 39(7), 503–507. https://doi.org/10.1093/eurheartj/ehx050
[57] Manolis, A. A., Manolis, T. A., Melita, H., et al. (2020). Subclinical thyroid dysfunction and cardiovascular consequences: An alarming wake-up call? Trends in Cardiovascular Medicine, 30(2), 57–69. https://doi.org/10.1016/j.tcm.2019.02.011
[58] McQuade, C., Skugor, M., Brennan, D. M., et al. (2011). Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: A PreCIS database study. Thyroid, 21(8), 837–843. https://doi.org/10.1089/thy.2010.0298
[59] Han, C., Xu, K., Wang, L., et al. (2022). Impact of persistent subclinical hypothyroidism on clinical outcomes in non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention. Clinical Endocrinology, 96(1), 70–81. https://doi.org/10.1111/cen.14613
[60] Moon, S., Kim, M. J., Yu, J. M., et al. (2018). Subclinical hypothyroidism and the risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Thyroid, 28(9), 1101–1110. https://doi.org/10.1089/thy.2017.0414
[61] Gesing, A., Lewiński, A., & Karbownik-Lewińska, M. (2012). The thyroid gland and the process of aging; what is new? Thyroid Research, 5(1), 16. https://doi.org/10.1186/1756-6614-5-16
[62] Huang, G., Lu, H., Li, M., et al. (2021). Association of total cholesterol and atherosclerotic cardiovascular disease in patients with follicular thyroid cancer: A real-world study from Chinese populations. Medicine, 100(39), e27310. https://doi.org/10.1097/MD.0000000000027310
[63] Sridharan, K., & Kalra, S. (2024). Dyslipidaemia in endocrine disorders. Indian Heart Journal, 76(Suppl 1), S83–S85. https://doi.org/10.1016/j.ihj.2023.12.012
[64] Gao, S., Ma, W., Huang, S., et al. (2021). Impact of low triiodothyronine syndrome on long-term outcomes in patients with myocardial infarction with nonobstructive coronary arteries. Annals of Medicine, 53(1), 741–749. https://doi.org/10.1080/07853890.2021.1931428
[65] Ramirez, M., Bianco, A. C., & Ettleson, M. D. (2024). The impact of hypothyroidism on cardiovascular-related healthcare utilization in the US population with diabetes. Journal of the Endocrine Society, 9(1), bvae204. https://doi.org/10.1210/jendso/bvae204
[66] Kahaly, G. J., Liu, Y., & Persani, L. (2025). Hypothyroidism: Playing the cardiometabolic risk concerto. Thyroid Research, 18(1), 20. https://doi.org/10.1186/s13044-025-00233-y

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).