Numerical Analysis of Spreading Process of Ellipsoidal Spraying Droplet Impacting on Superhydrophobic Surface

  • Qingmin Pan School of Mechanical Engineering, Anhui University of Technology, China
  • Deyu Tu School of Mechanical Engineering, Anhui University of Technology, China
  • Baohong Tong School of Mechanical Engineering, Anhui University of Technology, China
  • Yongguang Hu School of Agricultural Engineering, Jiangsu University, China
  • Tao Wang School of Mechanical Engineering, Anhui University of Technology, China
Keywords: ellipsoidal droplet, kinetic behavior, pesticide spray, gas-liquid flow, spreading factor, interface tracking environmental impact

Abstract

Agricultural spray deposition is especially important for pesticide application because low efficiency can lead to environmental pollution, poor biological efficiency and economic loss. The deposition of pesticide spray on the leave surfaces is related to the impact kinetic behavior of droplets. But after considering the deformation of the droplet, how impingement will affect the deposition is an interesting research. In this study, a superhydrophobic surface was used to replace the plant surface that the pesticide droplets may affect. An interface tracking method was proposed to characterize the impingement dynamics behaviors of different ellipsoid droplets impacting on the surface. The maximum spreading coefficient and time of ellipsoidal droplets increased with the raise of their size. A lower sized droplet has a faster spreading rate, while the center of a higher sized droplet is thinner. As the velocity of pesticide increases, maximum spreading coefficient of droplet increases with a decrease in the maximum spreading time of droplet. The simulation results can contribute to provide theoretical basis for improving spray efficiency.

References

Andrade, R., Skurtys, O., & Osorio, F. (2012). Experimental study of drop impacts and spreading on epicarps: Effect of fluid properties. J. Food Eng., 109(3), 430-437. https://doi.org/10.1016/j.jfoodeng.2011.10.038
Bange, P. G., & Bhardwaj, R. (2016). Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces. ThCFD, 30. https://doi:10.1007/s00162-015-0376-3
Boukhalfah, H., Massinon, M., Belhamra, M., & Lebeau, F. (2014). Contribution of spray droplet pinning fragmentation to canopy retention. Crop Prot., 56, 91-97. https://doi.org/10.1016/j.cropro.2013.11.018
Brackbill, J. U., Kothe, D. B., & Zemach, C. A. (1992). Continuum method for modeling surface tension. J. Comput. Phys., 100(2), 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
Dorr, G. J., Kempthorne, D. M., Mayo, L. C., Forster, W. A., Zabkiewicz, J.A., McCueS, W., … Hanan, J. (2014). Towards a model of spray–canopy interactions: Interception, shatter, bounce and retention of droplets on horizontal leaves. Ecol. Model., 290. https://doi.org/10.1016/j.ecolmodel.2013.11.002
Eggers, J., Fontelos, M. A., Josserand, C., & Zaleski, C. (2010). Drop dynamics after impact on a solid wall: Theory and simulations. Phy. Fluids, 22(6), 772-584. https://doi:10.1063/1.3432498
Kékesi, T., Amberg, G., & Wittberg, L. P. (2014). Drop deformation and breakup. Int. J. Multiphas. Flow, 66, 1–10. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.006
Kim, H. Y., & Chun, J. H. (2001). The recoiling of liquid droplets upon collision with solid surfaces. Phy. Fluids, 13(3), 643-659. https://doi:10.1063/1.1344183
Lee, J., Natarajan, B., Eun, W. J., Viswamurthy, S. R., Park, J., Kim, T., & Shin, S. (2013). Structural and mechanism design of an active trailing-edge flap blade. J. Mech. Sci. Technol., 27(9), 2605-2617. https://doi.org./10.1007/s12206-013-0704-8
Lin, S. J., Zhao, B. Y., Zou, S., Guo, J. W., Wei, Z., & Chen, L. Q. (2018). Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. J. Colloid Inter. Sci., 516, 86-97. https://doi.org/10.1016/j.jcis.2017.12.086
Paola, G. P., Lin, Y. C., Wang, R. J., Yu, T. S., & Lin, S.Y. (2015). Bubbles entrapment for drops impinging on polymer surfaces: The roughness effect. Exp. Therm. Fluid Sci., 62. https://doi.org/10.1016/j.expthermflusci.2014.12.015
Subhasish, M., Mayur, J. S., Elham, D., Ranjeet, U., , K. S., Geoffrey, M. E., … Jyeshtharaj, B. J. (2013). Droplet impact dynamics on a spherical particle. Chem. Eng. Sci., 100, 105–119. https://doi.org/10.1016/j.ces.2013.01.037
Sussman, M., & Puckett, E. G. (2000). A coupled level set and volume-of fluid method for computing 3D and axisymmetric incompressible two phase flows. J. Comput. Phys., 162(2), 301-307. https://doi.org/10.1006/jcph.2000.6537
Wang, L., Wang, R., Wang, J., & Wong, T. S. (2020). Compact nanoscale textures reduce contact time of bouncing droplets. Sci. Adv., 6(29), eabb2307. https://doi:10.1126/sciadv.abb2307
Yun, S. (2018). Impact dynamics of egg-shaped drops on a solid surface for suppression of the bounce magnitude. Int. J. Heat Mass Tran., 127, 172-178. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.157
Yun, S., Hong, J., & Kang, K. H. (2013). Suppressing drop rebound by electrically driven shape distortion. Phys. Rev. E., 87 (3): 033010. https://doi:10.1103/PhysRevE.87.033010
Yun, S., & Lim, G. (2014). Control of a bouncing magnitude on a heated substrate via ellipsoidal drop shape. Appl. Phys. Lett., 105 (24): 244108. https://doi:10.1063/1.4904838
Zhu, L., Ge, J. R., Qi, Y. Y., Chen, Q., Hua, R. M., Luo, F., & Chen, P. R. (2018). Droplet impingement behavior analysis on the leaf surface of Shu-ChaZao under different pesticide formulations. Comput. Electron. Agr., 144. https://doi.org/10.1016/j.compag.2017.11.030
Zwertvaegher, I. K., Micheline, V., Brusselman, E., Verboven, P., Frederic, L., Mathieu, M., … Nuyttens D. (2014). The impact and retention of spray droplets on a horizontal hydrophobis surface. Biosyst. Eng., 126, 82–91. https://doi:10.1016/j.biosystemseng.2014.07.013
Published
2020-11-05
Section
Articles