Effect of Different Fertilization Rates on Cyanogen and Foliage and Tuber Yields of Cassava

  • Yin Yin Kyawt Department of Animal Nutrition, University of Veterinary Science, Myanmar
  • Achara Lukkananukool Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
  • Win Mi Htwe Livestock Breeding and Veterinary Department, Nay Pyi Taw, Myanmar
  • Min Aung Department of Animal Nutrition, University of Veterinary Science, Myanmar
Keywords: Cassava, nitrogen, potassium, HCNp, yield

Abstract

This experiment was conducted to determine the effect of different fertilization rates on the cyanogen and yields of cassava foliage and tuber. Nine fertilization rates, three nitrogen and potassium levels (N: 0, 50, 100 kg/ha and K: 0, 100, 250 kg/ha, respectively) with constant phosphorus level (P: 50 kg/ha) (F-0:N0-P50-K0, F-1:N0-P50-K100, F-2:N0-P50-K250, F-3:N50-P50-K0, F-4:N50-P50-K100, F-5:N50-P50-K250, F-6:N100-P50-K0, F-7:N100-P50-K100, F-8:N100-P50-K250), were applied in the randomized completely block design. After one year experiment, cassava foliage and tuber were harvested, and determined the yields and cyanogen (HCNp) content. The lowest (P < 0.05) HCNp contents and the highest (P < 0.05) foliage, tuber and protein yields were observed in cassava applied with F-4 (N50-P50-K100) and F-5 (N50-P50-K250) in compare with other fertilization rates. Regarding growth characteristics, the plant height (P < 0.05) was also highest in cassava fertilized by F-4 (N50-P50-K100) and F-5 (N50-P50-K250), whereas the leaf numbers per plant and branches number per plant were highest in cassava applied with F-5 (N50-P50-K250) and F-7 (N100-P50-K100), respectively. It could be recommended that the nitrogen (N: 50 kg/ha) and potassium (K: 100-250 kg/ha) should be used to reduce cyanogen contents for safe utilization and increased cassava foliage and tuber yields.

References

AOAC. (1985). Association of Official Analytical Chemists. Official Method of Analysis. Association of Official Analytical Chemists, Washington, D.C.
Ayoola, O. T., & Makinde, E. A. (2007). Fertilizer treatment effects on performance of cassava under two planting patterns in a cassava-based cropping system in south west Nigeria. Research Journal of Agriculture and Biological Sciences, 3(1), 13-20.
Bolhuis, G. G. (1954). The toxicity of cassava root. Netherlands Journal of Agricultural Science, 2(3), 176-185.
Bradbury, J. H., Egan, S. V., & Lynch, M. J. (1991). Analysis of cyanide in cassava using acid hydrolysis of cyanogenic glucosides. Journal of the Science of Food and Agriculture, 55(2), 277-290. https://doi.org/10.1002/jsfa.2740550213
Bradbury, M. G., Egan, S. V., & Bradbury, J. H. (1999). Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. Journal of the Science of Food and Agriculture, 79(4), 593-601. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<593:AID- JSFA222>3.0.CO;2-2
Cardoso, A.P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., Haque, M. R., & Bradbury, J. H. (2005). Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18(5), 451-460. https://doi.org/10.1016/j.jfca. 2004.04.002
Eggum, B. O. (1970). The protein quality of cassava leaves. British Journal of Nutrition, 24(3), 761-786. https://doi.org/10.1079/BJN19700078
Gomez, J. C., Howeler, R. H., & Webber, E. J. (1980). Cassava production in low fertility soils. In M.J.C. Toro, & M. Graham (Eds.), Cassava cultural practices. Bowker Publ. Co. Ltd., Epping. U.K.
Howeler, R. H. (1985). Potassium nutrition of cassava. In: Proceedings of the international symposium on potassium in agriculture. Atlanta, madison, Wisconsin. p. 819-841.
Howeler, R. H. (2002). Cassava mineral nutrition and fertilization. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds), Cassava: Biology, Production and Utilization. CAB International, Wallingford, Oxon, UK.
Hue, K. T., Van, D. T. T., Ledin, I., Wredle, E., & Sporndly, E. (2012). Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield. Asian-Australian Journal of Animal Science, 25(12), 1691-1700. http://dx.doi.org/10.5713/ajas.2012.12052
Mahmud, K., Ahmad, I., & Ayub, M. (2003). Effect of nitrogen and phosphorus on the fodder yield and quality of two sorghum cultivars (Sorghum bicolor L.). International Journal of Agriculture and Biology, 5(1), 61-63.
Mehdi, S. M., Sarfraz, M., & Hafeez, M. (2007). Response of rice advance line PB-95 to potassium application in saline-sodic soil. Pakistan Journal of Biological Science, 10(17), 2935-2939. https://doi.org/10.3923/pjbs.2007.2935.2939
Molina, J. L., & EI-Sharkawy, M. A. (1995). Increasing crop productivity in cassava by fertilizing production of planting material. Field Crop Research, 44(2-3), 151-157. https://doi.org/10.1016/0378-4290(95)00082-8
Mosier, A. R., Syers, J. K., & Freney, J. R. (2004). Nitrogen fertilizer: an essential component of increased food, feed and fiber production. In A. R. Mosier, J. K. Syers, & J. R. Freney (Eds.), Agriculture and the Nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment (pp. 3-15). Scope, island press. Washington DC. 65.
Nambisan, B. (2010). Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety. Food Chemistry and Toxicology, 49(3), 690-693. https://doi.org/10.1016/j.fct.2010.10.035
O’Brien, G. M., Chow, E. P. L., & Price, R. K. (2007). Initial evaluation of field-friendly extraction procedure for the enzymatic assay of cassava cyanogens. International Journal of Food Science and Technology, 42(8), 999-1006. https://doi.org/10.1111/j.1365-2621.2006.01396.x
Okigbo, B. N. (2001). Nutritional implication of projects giving high priority to the production of staples of low nutritive quality: The case for cassava (Manihot esculenta, Crantz) in the humid tropics of West Africa. International Institute of Tropical Agriculture, Ibadan, Nigeria.
Okpara, D. A., Agoha, U. S., & Iroegbu, M. (2010). Response of cassava variety TMS/98/0505 to potassium fertilization and time of harvest in South Eastern Nigeria. Nigeria Agr. J., 41(1), 91-100.
Onwueme, I. C., & Charles, W. B. (1994). Tropical root and tuber crops: Production perspectives and future prospects. FAO plant production and protection paper. FAO, Rome.
Parkes, E. Y., Allotey, D. F. K., Lotsu, E., & Akuffo, E. A. (2012). Yield performance of five cassava genotypes under different fertilizer rates. Internatinal Journal of Agricultural Science, 2(5), 173-177.
Peech, M., Cowan, R. L., & Baker, J. H. (1962). A critical study of the BaCL2-triethanolamine and the Ammonium acetate methods for determining the exchangeable hydrogen content of soils. Soil Science Society of America Journal, 26(1), 37-40. https://doi.org/10.2136/sssaj1962.03615995002600010 010x
Peter, K. B., & Birger, L. M. (2002). Dhurrin synthesis in sorghum is related at the transcriptional level and induced by nitrogen fertilization in order plants. Plant Physiology, 129, 1222-1231. https://doi.org/10.1104/pp.000687
Putthacharoen, S., Howeler, R. H., Jantawat, S., & Vichukit, V. (1998). Nutrient uptake and soil erosion losses in cassava and six other crops in a Psamment in eastern Thailand. Field Crops Research, 57(1), 113-126. https://doi.org/10.1016 /s0378-4290(97)00119-6
Ravindran, V. (1993). Utilization of cassava (Manihot esculenta, Crantz) leaves in animal nutrition. Journal of National Scientific Council Sri Lanka, 21, 1-26.
Ravindran, V., Kornegay, E. T., Webb, K. E. & Rajaguru, A. S. B. (1982). Nutrient characterization of some feedstuffs of Sri Lanka. Journal of National Agricultural Society, Ceylon, 19, 19-32.
Rogers, D. J., & Milner, M. (1963). Amino acid profile of manioc leaf protein in relation to nutritive value. Economic Botany, 17, 211-216. https://doi.org/10.1007/BF 02859438
Sarfo, E. Y., Ofori, F., & Dennis, E. A. (1998). Report of the Sub-Committee on fertilizer use for the national agricultural research programme (NARP). Accra. Ghana.
Sher, A., Ansar, M., Hassan, F. U., Shabbir, G., & Malik, M. A. (2012). Hydrocyanic acid content variation amongst sorghum cultivars grown with varying seed rates and nitrogen levels. International Journal of Agriculture and Biology, 14(5), 720-726.
SPSS. (2007). Statistical Package for the Social Science. Version 16.0. SPSS Inc. United State of America.
Truog, E. (1930). The determination of readily available phosphorus in soils. American Society Agrono, 22, 874-882.
Uwah, D. F., Effa, E. B., Ekpenyong, L. E., & Akpan I. E. (2013). Cassava (Manihot esculenta, Crantz) performance as influenced by nitrogen and potassium fertilizers in Uyo, Nigeria. Journal of Animal and Plant Science, 23(3), 550-555.
Worthington, V. (2001). Nutritional quality of organic versus conventional fruits, vegetables and grains. The Journal of Alternative and Complementary Medicine, 7(2), 161-173. https://doi.org/10.1089/ 107555301750164244
Zhao, D., Reddy, K. R., Kakani, V. G., & Reddy, V. R. (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 22(4), 391-403. https://doi.org/10.1016/j.eja.2004.06.005
Published
2020-06-23
Section
Articles