Grain Yield Performance and Parametric Stability Statistics of Tef {Eragrostis tef (Zucc) Trotter} Genotypes in Tigray, Ethiopia

  • Chekole Nigus Tigar Agricultural Research Institute, Axum Agricultural Research center, Ethiopia
  • Yonas G Mariam Tigar Agricultural Research Institute, Axum Agricultural Research center, Ethiopia
  • Hailegbreal Kinfe Tigar Agricultural Research Institute, Maytsebrie Agricultural Research center, Ethiopia
  • Brhanu Melese Tigar Agricultural Research Institute, Axum Agricultural Research center, Ethiopia
  • Ataklty Mekonen Tigar Agricultural Research Institute, Axum Agricultural Research center, Ethiopia
Keywords: Genotype by environment interaction, tef yield Stability, stability parametric methods of tef

Abstract

The most constraints of tef productions are lodging, drought, low yield cultivars; insect and disease affected the growth of tef. These, factors causes inconsistence performance yield due to GEI. The objective was to evaluate tef genotypes on their yield performance, stability and parametric stability to select most independent and informative statistics method. The experiment was conducted at four locations for two seasons; with design of RCBD three replications, two standard checks and 19 tef genotypes. Data was collected on grain yield and analyzed by R software and STABILITYSOFT. The analysis of variance for the combined mean of grain yield showed that there was significance difference (P<0.001) between genotypes, environments and GEI. Yield performance was influenced by Environments and GEI. The mean grain yield of genotypes over GEI varies from 820.94kg/ha to 2438.90kg/ha, while the genotype grain yield was ranged from 1382 to 1989kg/ha. G19, G17 and G6 were identified the higher grain yield performance over seven environments. Whereas, G8 and G11 were the lowest yielding tef genotypes. Nine parametric methods and GGE biplot were used to evaluate the stability of the genotypes. G19 was the most stable following G17 and would be grown for unfavorable growing environments. However, G6 was stable for favorable environmental condition. G19 and G17 had static stability and fitting for area faced with erratic rain fall. Even though, parametric stability did not show a positive and statistically significant correlation with mean yield the Mean variance component (θi) is selected with GGE biplot for evaluation of tef genotypes in the development of cultivar. Effective selection of variety would be best if mega-environment, representative and discriminating testing areas are identified.

References

Annicchiarico, P. (2002). Genotype × environment interaction: challenges and opportunities for plant breeding and cultivar recommendation. FAO Plant Production and Protection (Paper No. 174). Rome: FAO.
Assefa, K., Cannarozzi, G., Girma, D., Kamies, R., Chanyalew, S., Plaza-Wüthrich, S., … Tadele, Z. (2015). Genetic Diversity in Tef [Eragrostis Tef (Zucc.) Trotter]. Frontiers in Plant Science, 6, 177.
Bnrnn, R. J. (1988). Tests for crossover genotype-environmental interactions. Can. J. Plant Sci., 68, 405-410.
Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1985). Stability Analysis: Where Do We Stand? Research scientists, Engineering and Statistical Res. Centre, Agric. Canada.
Lin, C. S., Binns, M. R., &. Lefkovitch, L. P. (1985). Stability Analysis: Where Do We Stand? Res. Branch, Agric. Canada, Ottawa, Canada.
Lin, C. S., & Binns, M. R. (1991). Assessment of a method for cultivar selection based on regional trial data. Theor Appl Genet, 82, 379-388.
Chandra, S., Sohoo, M. S., & Singh, K. P. (1974). Genotypeenvironment interaction for yield in ram. Journal of Research, 8,165-168
Cruz, C. D., Regazzi, A. J., & Carneiro, P. C. S. (2004). Modelos biométricos aplicados ao melhoramento genético. v. 1(3rd ed). Viçosa: Editora da UFV.
CSA. (2018). The Federal Democratic Republic of Ethiopia Central Statistical Agency Agricultural Sample Survey. Volume I Report on Area and Production Of Major Crops. 586 Statistical Bulletin 586, Addis Ababa April, 2018.
Ebba, T. (1969). Tef (Eragrostistef): The Cultivation, Usage, And Some of The Known Disease and Insect Pests. Part I. Experiment Station Bulletin 60. Haile Sellassie I University, College of Agriculture.
Eberhart, S., & Russel, W. A. (1966). Stability Parameters For Comparing Variaaties. Crop Science, 6, 36-40.
Elesandro, B., Giovani, B., Lindolfo, S., Leomar, G. W., Thiago, D., Matheus, G. S., & Sergio, V. M. (2017). Statistical methods to study adaptability and stability of wheat genotypes. Basic Area. Bragantia Campinas, 76(1), 1-10.
Elisa, F. M., Purificacio, G., & Victor, L. (2014). An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch Environ Res Risk Assess, 28, 1629–1641. https://doi.org/10.1007/s00477-013-0821-z
Ezatollah, F., Nasrin, M., Anita, Y. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.) Aisterialn journal of crop science, 5(13), 1837-1844.
Farshadfar, E., & Sutka, J. (2006). Biplot analysis of genotype environment interaction in durum wheat using the AMMI model. Acta Agronomica Hungarica, 54, 459-467.
Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res., 14, 742-754.
Francis, T. R., & Kannenberg, L. W. (1978). Yield stability studied in short-season maize. I. A descriptive method for grouping genotypes. Can. J. Plant Sci., 58, 1029-1034.
Habte, J., Kebebew, A., Kassahun, T., Kifle, D., & Zerihun, T. (2015). Genotype-by-Environment Interaction and Stability Analysis in Grain Yield of Improved Tef (Eragrostis tef) Varieties Evaluated in Ethiopia. Journal of Experimental Agriculture International, 35(5), 1-1.
Hagos, H. G., & Abay, F. (2013). AMMI and GGE biplot analysis of bread wheat genotypes in the northern part of Ethiopia. Journal of Plant Breeding and Genetics, 1, 12-18.
Heinrich, G. M., Francis C. A., & Eastin J. D. (1983). Stability of Grain Sorghum Yield Components Across Diverse Environments. Crop Sci., 23, 209–212.
Joâo batista Duarte & Maria Jose de O. Zimmermann. (1995). Correlation among yield stability parameters in common bean. Crop science, 35(3).
John M. C. (2016). Extending R. Chapman and Hall/CRC Press, 364 pp., ISBN 9781498775717, GBP 44.99 (print), GBP 31.49 (eBook).
Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453e467.
Kang, M. S., & Pham, H. N. (1991). Simultaneous selection for high yielding and stable crop genotypes. Agron. J., 83, 161-165.
Kassa, L. D., Smith, M. F., & Fufa, H. (2006). Stability Analysis Of Grain Yield Of Tef (Eragrostis Tef) Using The Mixed Model Approach. South African Journal Of Plant And Soil, 23(1), 38-42.
Kebebew, A., Getachew, B., Hailu, T., Ju-Kyung, Y., & Mark, E. S. (2009). Breeding Tef: Conventional and Molecular Approaches. Pp 21-25. In Zerihun Tadele (Ed.), New Approaches to Plant Breeding of Orphan Crops In Africa: Proceedings Of An International Conference (pp. 19-21). September 2007, Bern, Switzerland.
Kebebew, A., Yu, J. K., Zeid, M., Gelay, G., Tefera, H., & Sorrells, M. E. (2011). Breeding tef [Eragrostis tef (Zucc.) trotter]: conventional and molecular approaches. Plant Breeding, 130, 1-9.
Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: Where do we stand? Crop Sci., 26, 894-900.
ÜLker, M., Sönmez, F., Çiftçi, V., Yilmaz, N., & Apak, R. (2006). Adaptation and Stability Analysis in The Selected Lines of Tir Wheat. Pak. J. Bot., 38(4), 1177-1183.
Asio, M. T., Osiru, D. S. O., & Adipala, E. (2007). Multilocational evaluation of selected local and improved cowpea lines in Uganda. Afr. Crop Sci. J., 13(4).
MoALR. (2017). Ministry of agriculture and livestock resource, plant variety release, protection and seed quality control directorate, crop variety Rehister, Issue No. 20, Addis Ababa, Ethiopia.
Mohammadi, R., Abdulahi, A., Haghparast, R., & Armion, M. (2007). Interpreting genotype x environment interactions for durum wheat grain yields using nonparametric methods. Euphytica, 157, 239-251. http://dx.doi.org/10.1007r/s10681-007-9417-3
Mohammadi, R., Mozaffar, R. M., Yousef, A., Mostafa, A., & Amri, A. (2010). Relationships of phenotypic stability measures for genotypes of three cereal crops. Canadian Journal Plant Science, 90, 819-830.
Muluken, B. (2009). Analysis and Correlation of Stability Parameters in Malting Barley. African Crop Science Journal, 17(3), 145-153.
Plaisted, R. I., & Peterson. L. C. (1959). A technique for evaluating the ability of selection to yield consistently in different locations or seasons. American Potato Journal, 36, 381–385.
Plaisted, R. L. (1960). A shorter method for evaluating the ability of selections to yield consistently over locations. American Potato Journal, 37, 166–172.
Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., & Siddique, K. H. M. (2019). STABILITYSOFT: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1), e1211. http://dx.doi.org/10.1002/aps3.1211
Purchase, J. L., Hatting, H., &Vandeventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: Π. Stability analysis of yield performance. South Afric J Plant Soil, 17, 101-107.
Romagosa, I., & Fox, P. N. (1993). Genotype x environment interaction and adaptation. p. 374-390. In Hayward, M.D., N.O. Bosemark, and I. Romagosa (eds.) Plant breeding, principles and prospects. Chapman & Hall, London, UK.
Roostaei, M., Mohammadi, R., & Amri, A. (2014). Rank correlation among different statistical models in ranking of winter wheat genotypes. The Crop Journal, 2, 154-163. http://dx.doi.org/10.1016/j.cj.2014.02.002
Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). Nonparametric methods for interpreting genotype × environment interaction of lentil genotypes. Crop Science, 46, 1100-1106. http://dx.doi.org/10.2135/cropsci2005.06-0122
Seyfu, K. (1993). Tef, (Eragrostis Tef): Breeding, Genetic Resources, Agronomy, Utilization and Role In Ethiopian Agriculture. Institute of Agricultural Research, Addis Ababa, Ethiopia.
Shukla, G. K. (1972). Some statistical aspects of partitioning genotypeenvironmental components of variability. Heredity, 29, 237–245
Silva, W. C. J., & Duarte, J. B. (2006). Métodos estatísticos para estudo de adaptabilidade e estabilidade fenotípica em soja. Pesquisa Agropecuária Brasileira, 41, 23-30. http://dx.doi.org/10.1590/S0100-204X2006000100004
Spaenij-Dekking, L., Kooy-Winkelaar, Y., & Frits, K. (2005). The Ethiopian Cereal Tef In Celiac Disease. The New England Journal of Medicine, 353, 1748-1749.
SPSS Inc. (2009). Statistical Package for Social Scientists. SPSS for Windows. Release 18.0. SPSS Inc. Chicago, IL.
Tiruneh K. (1999). Assessment of Genotype xEnvironment Interaction for Yield and Yield Related Traits in Tef [Eragrostis Tef (Zucc.) Trotter] Genotypes. Msc Thesis, Alemaya University of Agriculture, Ethiopia.
Wricke, G. (1962). U ber eine Methode zur Erfassung dero¨ kologischen Streubreite in Feldversuchen. Z. Pflanzenzu¨ chtg47, 9296.
Y ali, Z., Hussian, F., & Shakur, A. (2004). Genotypes by environment interaction in cowpea for yield and disease resistance. Int J. environ Sci Technolog, 1(2), 119-123.
Yan, W., & Tinker, N. A. (2006). Biplot Analysis of Multi-Environment Trial Data: Principles and Applications. Can J Plant Sci., 86, 623–645.
Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL.
Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci., 86, 623–645.
Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci., 40, 596–605.
Yang, R. C., Crossa, J., Cornelius, P. L., & Burgueño, J. (2009). Biplot analysis of genotype × environment interaction: proceed with caution. Crop Science, 49, 1564-1576. http://dx.doi.org/10.2135/cropsci2008.11.0665
Published
2020-04-02
Section
Articles