Optimisation of Off-Soil Tomato Fertilization and Substrate Recipes

  • Edouard Tabet CRFA: Centre de Recherche et Formation Agricole, Lebanese University, Ghazir, Lebanon
  • Paul Sleiman Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, Lebanon
  • Chadi Hosri Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, Lebanon
  • Souzi Rouphael Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, Lebanon
  • Lina Farah CRFA: Centre de Recherche et Formation Agricole, Lebanese University, Ghazir, Lebanon
Keywords: soil-less culture, fertilizer, tomato, coconut fiber, grape marc, grow bag technique, stem length, number of nodes, distance between nodes, number of flower buds, distance between flower buds, number of fruits, yield

Abstract

Substrate and fertilizers recipes and their balances are two factors affecting the growth of hydroponic crops. However, the responses of crop cultivars to different substrate and fertilizer are less clear. This study was aimed at assessing the different responses of tomato (Solanum Lycopersicum L.) cultivars to the different substrate and fertilizer supply. The study was carried out at the Centre de Recherche et de Formation Agricole (CRFA) of the Lebanese University to test three types of substrates; S1 (100% coconut fiber), S2 (50% coconut fiber and 50% grape marc) and S3 (25% coconut fiber and 75% grape marc). As well as three fertilization recipes; F1 (ARTC), F2 (University of Arizona) and F3 (Farmer) were applied in order to be able to recommend the best substrates and fertilizers adapted to the conditions of cultivation off-soil. The production cycle was divided into three phases; phase1 (0-6 weeks), phase2 (6-12 weeks) and phase3 (> 12 weeks). Various parameters were measured throughout the cycle; stem length, number and distance between nodes, number and distance between flower buds, and fruit yield. Results for stem length and number of nodes showed good interaction in favor of F2-S1 throughout the cycle. As far as the distance between nodes is concerned, F1 is the best despite the fact that F2 is more economical and S1 showed a superiority. The number of flower buds is positively affected by F1 and F2 and S1 and S3. As far as the distance between floral buds is concerned, F1 and F2 are the best, F2 is the most profitable and S2 played a favorable role in the distance between floral buds. The number of fruits is in favor of F1 and F2, S1 is the best. In terms of plant yield, F2 is the most favorable and S2 is the best. After that, F2 is the best recipe and F1 is the most economical. S1 and S2 did well in the development of the tomato plant by their proper physico-chemical properties. S1 is slightly better.

References

Adams, P. (2002). Nutritional Control in Hydroponics. In Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens Greece, 211-261.
Ametqal, H. (1988). Use of grapes skins as a horticultural growing media, FAO.
Aminifard, M. H., Aroiee, H., Fatemi, H., Ameri, A., & Karimpour, S. (2010). Responses of eggplant (Solanum melongena L.) to different rates of nitrogen under field conditions. Journal of Central European Agriculture, 11(4), 453-458. https://doi.org/10.1590/1807-1929/agriambi.v21n1p21-26
Badiane, A., Ndeye, Y., Fatou, G., Saliou, F., Ibrahima, N., & Dominique, M. (2012). Effects of different inputs of organic matter on the response of plant production to a soil water stress in Sahelian region. Disponible sur http://dx.doi.org/10.4236/ns.2012.41212, 2012
Balemi, T. (2008). Response of tomato cultivars differing in growth habit to nitrogen and phosphorus fertilizers and spacing on vertisol in Ethiopia. Acta Agriculturae Slovenica, 91(1), 103-119. Journal of Agriculture Science, 24(1) 55-59.
Bhattarai, P., Kaushik, R. A., Ameta, K. D., Jain, H. K., Kaushik, M. K., & Sharma, F. L. (2015). Effect of plant geometry and fertigation on growth and yield of cherry tomato (Solanum lycopersicon var. cerasiforme) under zero energy polyhouse conditions. Indian Journal of Horticulture, 72, 297-301. https://doi.org/10.5958/0974-0112.2015.00057.2
Birle, E., Heyer, D., & Vogt, N. (2008). Influence of the initial water content and dry density on the soil-water retention curve and the shrinkage behavior of a compacted clay. Acta Geotechnica, 3, 191-200.
Chandra, P., Singh, A. K., Behera, T. K., & Srivastava, R. (2003). Influence of graded levels of nitrogen, phosphorus and potassium on the yield and quality of tomato (Lycopersicon esculentum) hybrids grown in a polyhosue. Indian J. Agric. Sci., 73(9), 497-499.
Cornillon, P. (1987). Les exigences des espèces, In Culture hors-sol, INRA, Paris. P 22.
Dhiman, S., & Raturi, H. (2018). Effect of Nitrogen and Phosphorus on tomato (solanum lycopersicum L.) grown under polyhouse condition: 25-28.
Ewulo, B. S., Sanni, K. O., & Adesina, J. M. (2015). Response of tomato (Lycopersicum esculentum Mill.) to different levels of nitrogen and phosphorus fertilizer in South Western Nigeria. International Journal of Applied and Pure Science and Agriculture, 1(10), 13-20.
FAO. (2013). Résultats de la production de tomate mondiales, FAO stat.
Han, P., Violette, A., & Desneux, N. (2014). Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Nature Research.
Haque, M. E., Paul, A. K., & Sarker, J. R. (2011). Effect of nitrogen and boron on the growth and yield of tomato (Lycopersicon esculentum Mill.). International Journal of Bio-resource and Stress Management, 2(3), 277-282.
Hopkins, G. (2003). Physiologie Vegetale. De Boeck University. P:67-70.
Hozhbryan, M. (2013). Effect of different levels of urea on the growth and yield of tomato. Journal of Novel Applied Sciences 2(S3): 1031-1035. ©2013 JNAS Journal-2013-2-S3/1031-1035 ISSN 2322-5149 ©2013 JNAS Internet 6: Sunco, Ltd., and University of Arizona, Controlled Environment Agriculture Center, consultée le 10 mai 2017. Retrieved from http://tinyurl.com/ljlj785/
IRAL. (2017). Analyse physico-chimique des substrats.
Kramer, P. J. (1983). Water Relations of Plants. Science direct: 235-261
Kumar, M., Meena, M. L., Kumar, S., Maji, S., & Kumar, D. (2013). Effect of nitrogen, phosphorus and potassium fertilizers on the growth, yield and quality of tomato var. Azad T-6. The Asian Journal of Horticulture, 8(2), 616- 619.
Larbi, M. (2006). Influence de la qualité des composts et de leurs extraits sur la protection des plantes contre les maladies fongiques. Thèse de doctorant. Université de Neuchâtel, Faculté des Sciences, p.161
Lemay, I. (2006). Régies d’irrigation et rendement de la tomate de serre en mélange sciure-tourbe. P.6.
Nawaz, H., Zubair, M., & Derawadan, H. (2012). Interactive effects of nitrogen, phosphorus and zinc on growth and yield of Tomato (Solanum lycopersicum). African Journal of Agricultural Research, 7(26), 3792-3769. https://doi.org/10.5897/AJAR12.1027
Roumani, M., Kechebar, M. S. A., Tabet, S., Djoudi, A. M., Barbari, F., Salem, A., & Ziad, M. S. (2012). Influence du type d’irrigation sur les paramètres de production de la culture de la tomate bio sous abri dans la plain d’el outaya. Journal algériens des régions arides No.9/10/11:66-70.
Saimbhi, M. S., & Satpal, S. (2003). Effect of varying levels of nitrogen and phosphorus on earliness and yield of brinjal hybrids. Journal of Research of Crops, 4, 217–222.
Shukla, Y. R., Thakur, A. K., & Joshi, A. (2009). Effect of inorganic and bio-fertilizer on yield and horticultural traits in tomato. Indian Journal of Horticulture, 66(2), 285-287.
Sibomana, I. C., Aguyoh, J. N., & Opiyo, A. M. (2013). Water stress affects growth and yield of container grown tomato (Lycopersicon esculentum Mill) plants. Global Journal of Bio-Science and Biotechnology, 2(4), 461-466. science and nature.org/GJBB_Vol2(4)2013/GJBB- V2(4) 2013-1
Upendra, M. S., Ramdane, D., & Bharat, S. (2003). Mineral nutrition of tomato. Agricultural Research Station, Fort Valley State University, Fort Valley, Georgia 31088, USA. Research Gate.
Urban, L., & Urban, I. (2010). La production sous serre, tomate 2: l'irrigation fertilisante en culture hors sol, Paris. Chapitre, 1, 2-40.
Xu, H. L., Gauthier, L., & Gosselin, A. (1995). Effects of fertigation management on growth and photosynthesis of tomato plant grown in peat, rockwool and NFT. Scientia Hort, 63, 11-20. https://doi.org/10.1016/0304-4238(95)00791-Q
Published
2020-05-25
Section
Articles

Most read articles by the same author(s)