Effect of Different Nutrient Solutions and Multiple Bio-Stimulant Dosages on Yield and Growth of Capsicum Annuum in Soilless System

  • Edouard Youssef Tabet Faculty of Agriculture and Veterinary Medicine, Department of Plant Production, Lebanese University, Dekwaneh, Lebanon
  • Lynn Samia Faculty of Agriculture, Department of Plant Production, Lebanese University, Dekwaneh, Lebanon
  • Suzy Rouphael Faculty of Agriculture, Department of Plant Production, Lebanese University, Dekwaneh, Lebanon
  • Chadi Hosri Faculty of Agriculture, Department of Animal Production, Lebanese University, Dekwaneh, Lebanon
  • Elie Awad Faculty of Agriculture, Department of Basic Sciences, Lebanese University, Dekwaneh, Lebanon
  • Dalida Darazy Faculty of Agriculture, Department of Plant Protection, Lebanese University, Dekwaneh, Lebanon
Keywords: Capsicum annuum, hydroponics, nutrient solutions, bio-stimulants, soilless agriculture

Abstract

This study evaluates the impact of two nutrient solutions (F1 and F2) and varying dosages of the plant bio-stimulant Atomes F.D.Inc. Bio Sciences PHP®, (D1 = 50 mL, D2 = 100 mL, D3 = 150 mL, and D0 = control) on the growth and yield of Capsicum annuum in a hydroponic system. The results demonstrate that F2 significantly enhanced overall plant growth and yield compared to F1, with notable increases in fruit count (25±10 vs. 24±9), average fruit width (8.31±1.02 cm vs. 8.03±1.00 cm), average fruit length (11.79±1.19 cm vs. 11.55±0.89 cm), and total yield weight (2.85±0.89 kg vs. 2.68±0.91 kg). Plants treated with D3 exhibited the highest yield, with a total fruit weight of 3.90 kg, compared to 1.69 kg in the control group (D0). D3-treated plants also produced an average of 37 fruits, while D0 produced only 13. Conversely, D0-treated plants resulted in larger individual fruit sizes, with an average fruit width of 8.98 cm and a length of 13.20 cm, compared to 7.89 cm and 10.91 cm in D3-treated plants. These findings underscore the importance of precise nutrient management and bio-stimulant applications in optimizing hydroponic bell pepper production. Future research should focus on long-term economic feasibility and large-scale implementation strategies.

References

Aluko, M. (2015). Nitrogen fertilizer effects on growth, yield and chemical composition of hot pepper (Rodo). International Journal of Agriculture and Crop Sciences, 8, 666–673. https://www.researchgate.net/publication/315799771.
Angmo, N. P., Dolma, N. T., Phuntsog, N. N., Chaurasia, N. O., & Stobdan, N. T. (2022). Effect of shading and high temperature amplitude on yield and phenolic contents of greenhouse capsicum (Capsicum annuum L.). Open Access Research Journal of Biology and Pharmacy, 4(1), 30–39. https://doi.org/10.53022/oarjbp.2022.4.1.0053.
Antón-Herrero, R., García-Delgado, C., Antón-Herrero, G., Mayans, B., Delgado-Moreno, L., & Eymar, E. (2022). Design of a hydroponic test to evaluate the biostimulant potential of new organic and organomineral products. Scientia Horticulturae, 310, 111753. https://doi.org/10.1016/j.scienta.2022.111753.
Atomes FD. Inc. (2023). BIOSCIENCES PHP. Atomes FD. Inc. https://www.atomesbio.com.
Ayankojo, I. T., Morgan, K. T., Kadyampakeni, D. M., & Liu, G. D. (2020). Tomato growth, yield, and root development, soil nitrogen and water distribution as affected by nitrogen and irrigation rates on a Florida sandy soil. HortScience, 55(11), 1744–1755.
Bai, R. N., Banu, N. R. L., Prakash, J. W., & Goldi, S. J. (2007). Effects of Asparagopsis taxiformis extract on the growth and yield of Phaseolus aureus. Journal of Basic and Applied Biology, 1(1), 6–11.
Biernacik, M., Wolski, K., Biernacik, M., Talar-Krasa, M., Leshchenko, O., & Święrszcz, S. (2018). Effect of the application of a biostimulant and mineral fertilization on the mineral element concentration in the sward of forage mixtures cultivated on light soil. Journal of Elementology, 24(1), Article 1569. https://doi.org/10.5601/jelem.2018.23.2.1569.
Camacho-Rodríguez, M., Almaraz-Suárez, J. J., Vázquez-Vázquez, C., Angulo-Castro, A., Ríos-Vega, M. E., & González-Mancilla, A. (2022). Effect of plant growth-promoting rhizobacteria on the growth and yield of jalapeño pepper. Revista Mexicana de Ciencias Agrícolas, 13, 185–187.
Chaitra, A. J., P, M. G. A., & Manjunath, B. (2024). Effect of bio-stimulants on growth, yield, quality and biotic resistance in chili (Capsicum annuum L.). International Journal of Plant & Soil Science, 36(5), 515–521. https://doi.org/10.9734/ijpss/2024/v36i54548.
Cmanneri. (2010, July 9). Balancing growth and fruiting. Weekly Crop Update. https://sites.udel.edu/weeklycropupdate/?p=2233.
Colla, G., & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1–2. https://doi.org/10.1016/j.scienta.2015.10.044.
De Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088.
Díaz-Pérez, J. C. (2010). Bell pepper (Capsicum annuum L.) grown on plastic film mulches: Effects on crop microenvironment, physiological attributes, and fruit yield. HortScience, 45, 1196–1204.
Ding, N., Chen, Q., Zhu, Z., Peng, L., Ge, S., & Jiang, Y. (2017). Effects of crop load on distribution and utilization of 13C and 15N and fruit quality for dwarf apple trees. Scientific Reports, 7(1), Article 14509. https://doi.org/10.1038/s41598-017-14509-3.
El-Bassiony, A. M., Fawzy, Z. F., Abd El-Samad, E. H., Riad, G. S., & National Research Center. (2010). Growth, yield, and fruit quality of sweet pepper plants (Capsicum annuum L.) as affected by potassium fertilization. Journal of American Science, 7(4), 722–729. http://www.americanscience.org.
Erickson, A. N., & Markhart, A. H. (2001). Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. Journal of the American Society for Horticultural Science, 126, 697–702.
Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sanchez-Cortes, S., & Nardi, S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomics approaches. Frontiers in Plant Science, 5, Article 375. https://doi.org/10.3389/fpls.2014.00375.
Ertani, A., Sambo, P., Nicoletto, C., Santagata, S., Schiavon, M., & Nardi, S. (2015). The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chemical and Biological Technologies in Agriculture, 2(1), Article 39. https://doi.org/10.1186/s40538-015-0039-z.
FAO. (2002). Optimizing nitrogen use on the farm. Food and Agriculture Organization of the United Nations. https://www.fao.org/4/y5146e/y5146e09.htm.
FAOSTAT. (2023). Production/yield of chilies and peppers, green worldwide and in Lebanon for the years 2020 and 2021. Food and Agriculture Organization of the United Nations.
Fawzy, Z. F., Behairy, A. G., & Shehata, S. A. (2005). Effect of potassium fertilizer on growth and yield of sweet pepper plants (Capsicum annuum L.). Egyptian Journal of Agricultural Research, 2, 559–610.
Golian, M., Mezeyová, I., Andrejiová, A., Hegedűsová, A., Adamec, S., Štefániková, J., & Árvay, J. (2024). Effects of selected biostimulants on qualitative and quantitative parameters of nine cultivars of the genus Capsicum spp. Open Agriculture, 9(1). https://doi.org/10.1515/opag-2022-0266.
Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., & Nain, L. (2021). PGPR mediated alterations in root traits: Way toward sustainable crop production. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.618230.
Published
2025-02-12
Section
Articles