A Primer on Gas Phase CO2 Production and Transport in Peatland Soils

  • Stephen Barry Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland
  • Alan Gilmer Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland
  • John Cassidy Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland
  • Eugene McGovern Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland
  • Vivienne Byers Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland
Keywords: peatlands, carbon, greenhouse gas emissions, land-use

Abstract

CO2 sequestered by peatlands is accounted for and offset against national emissions. Observational and modelling studies are used to estimate emission factors that dictate the rate of CO2 emissions or removals from peatlands accounted for within the Landuse and landuse change including forestry (LULUCF) sector and often use simple Tier 1 emission factors found in the IPCC (1996) guidebook. However, the current estimates are predominately based off peatland surface fluxes measured using either chamber methods or eddy covariance techniques. These methods do not focus on sub-surface conditions while this information may prove useful in understanding efflux rates and conditions that influence them. To help assess the potential significance of subsurface dynamics in overall CO2 efflux rates from peatlands this study proposes to review the literature dealing with subsurface conditions. The review found that the production of CO2 in the sub-surface layers was often uncoupled from emissions and that on short time-scales the storage of CO2 in soil pores and dissolved in soil water may account for this. The rate of production was found to be influenced by decomposition rate, vegetation type, nutrient availability and peat depth. The review also found that the mechanism of transport of CO2 within the sub-surface was important in accounting for efflux rates. While diffusion is often assumed the most significant form of transport, the quantification and dynamics of other non-diffusive transport methods were found to also be important and further research is required to ascertain the drivers of both diffusive and non-diffusive transport.

Author Biographies

Stephen Barry, Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland

Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Dublin, Ireland

College of Engineering & Built Environment, Technological University Dublin, Dublin, Ireland

Alan Gilmer, Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland

Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Dublin, Ireland

College of Engineering & Built Environment, Technological University Dublin, Dublin, Ireland

John Cassidy, Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland

Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Dublin, Ireland

School of Chemical & Pharmaceutical Sciences, Technological University Dublin, Dublin, Ireland

Eugene McGovern, Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland

Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Dublin, Ireland

College of Engineering & Built Environment, Technological University Dublin, Dublin, Ireland

Vivienne Byers, Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Ireland

Environmental Sustainability & Health Institute, Technological University Dublin Grangegorman, Dublin, Ireland

References

Alm, J., Schulman, L., Walden, J., Nyka¨nen, H., Martikainen, P. J., & Silvola, J. (1999): Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology, 80, 26-39.
Andrews, J. A., Harrison, K. G., Matamala R., & Schlesinger, W.H. (1999): Separation of root respiration from total soil respiration using carbon-13 labelling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Science Society of America Journal, 63, 1429-1435.
Bain, W. G., Hutyra, L., Patterson, D. C., Bright, A. V., Daube, B. C., Munger, W. J., & Wofsy, S. C. (2005). Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric. For. Meteorology, 131, 225-232.
Beer, J., & Blodau, C. (2007). Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim. Cosmochim. Acta., 71, 2989–3002.
Beilman, D. W., MacDonald, G. M., Smith, L. C., & Reimer P. J. (2009). Carbon accumulation in peatlands of West Siberia over the last 2000 years, Global Biogeochem. Cycles, 23, GB1012.
Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M., Kilburn, D., & Saddler, J. (2005). Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Applied Biochemistry and Biotechnology, 121–124, 163–170.
Bhatti, J. S., & Tarnocai, C. (2009). Influence of climate and land use change in agriculture, forest, and peatland ecosystems across Canada. In: Lal, R., Follett, R.F. (Eds.), Soil Carbon Sequestration and the Greenhouse Effect. Soil Science Society of America Special Publication, 57, Madison, WI, pp. 47e70.
Blagodatsky, S., & Smith, P. (2011). Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol. Biochem, 47, 78–92.
Bogner, J., Spokas, K., Burton, E., Sweeney, R., & Corona, V. (1995). Landfills as atmospheric methane sources and sinks. Chemosphere, 31, 4119–4130.
Boon, A., Robinson, J., Nightingale, P., Cardenas, L., Chadwick, D., & Verhoef, A. (2013). Determination of the gas diffusion coefficient of a peat grassland soil. European Journal of Soil Science, 64, 681-687.
Borken, W., & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808–824.
Burford, J. R., & Stefanson, R. C. (1973). Measurement of gaseous losses of nitrogen from soils. Soil Biol. Biochem, 133-141.
Chimner, R., & Ewel, K. (2005). A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecology and Management, 13, 671–684.
Clymo, R. S. (1992). Productivity and decomposition of peatland ecosystems. In O. M. Bragg, P. D. Hulme, H. A. P. Ingram, & R. A. Robertson (Eds.), Peatland Ecosystems and Man: An Impact Assessment (pp. 3-16). Dundee. University of Dundee.
Clymo, R. S., Turunen, J., & Tolonen, K. (1998). Carbon accumulation in peatland. Oikos, 81, 368-388.
Clymo, R. S., & Bryant, C. L. (2008). Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochimica et Cosmochimica Acta., 72, 2048-2066.
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett, 11, 1065–1071.
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., & Parton, W. J. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Genetics, 8, 776-779.
Couwenberg, J., Dommain, R., & Joosten, H., (2010). Greenhouse gas fluxes from tropical peatlands in South-East Asia. Global Change Biol., 16, 1715–1732.
Crow, S. E., & Wieder, R. K. (2005). Sources of Co-2 emission from a northern peatland: Root respiration, exudation, and decomposition. Ecology, 86, 1825-1834.
Dabrowska-Zielinska, K., Budzynska, M., Tomaszewska, M., Malińska, A., Gatkowska, M., Bartold, M., & Malek, I. (2016). Assessment of Carbon Flux and Soil Moisture in Wetlands Applying Sentinel-1 Data. Remote Sensing, 8, 10.3390.
Daly, E., Oishi, A. C., Porporato, A., & Katul, G. G. (2008). A stochastic model for daily subsurface CO2 concentration and related soil respiration. Advances in Water Resources, 31, 987-994.
Dean, W. E. (1999). Magnitude and significance of carbon burial in lakes, reservoirs, and northern peatlands. USGS Fact Sheet FS-058-99, 2.
Debusk, W. F., & Reddy, K. R. (2005). Litter decomposition and nutrient dynamics in a phosphorus enriched Everglades marsh. Biogeochemistry, 75, 217–240.
DeJong, E., and Schappert, H. J. V. (1972): Calculation of soil respiration and activity from CO2 profiles in the soil, Soil Science, 113, 328 – 333.
Dörr, H., & Katruff, L., & Levin, I. (1993). Soil texture parameterisation of the CH4 uptake in aerated soils. Chemosphere, 26, 697-713.
Dorrepaal, E., Toet, S., van Logtestijn, R. S., Swart, E., van de Weg, M. J., Callaghan, T. V., & Aerts, R. (2009). Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature, 460, 616-619.
Dunfield, P., Topp, E., Archambault, C., & Knowles, R. (1995). Effect of nitrogen fertilizers and moisture-content on CH4 and N2O fluxes in a Humisol – Measurements in the field and intact soil cores. Biogeochemistry, 29, 199-222.
Buckingham, E. (1904). Contributions to Our Knowledge of the Aeration Status of Soils, Bulletin 25, USDA Bureau of Soils, Washington, DC.
Elberling, B., Larsen, F., Christensen, S., & Postma, D. (1998). Gas transport in a confined unsaturated zone during atmospheric pressure cycles. Water Resources Res., 34, 2855–2862.
European Commission. (2018). Land use and forestry regulation for 2021-2030. Retrieved from https://ec.europa.eu/: https://ec.europa.eu/clima/policies/forests/lulucf_en retrieved on 6th July 2020
Fierer, N. S., & Schimel, J. P. (2003). A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67, 798-805.
Flechard, C. R., et al. (2007): Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe, Agric. Ecosyst. Environ, 121, 135-152.
Gagnon, S., L'Hérault, E., Lemay, M., & Allard, M. (2016). New low-cost automated system of closed chambers to measure greenhouse gas emissions from the tundra. Agricultural and Forest Meteorology, 228–229, 29-41.
Ganot, Y., Dragila, M. I., & Weisbrod, N. (2014). Impact of thermal convection on CO2 flux across the Earth-atmosphere boundary in high-permeability soils. Agric. For. Meteorology, 184, 12–24.
Gorham, E. (1991). Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecological Applications, 1, 182–195.
Graça, J., & Santos, S. (2007). Suberin: A Biopolyester of Plants' Skin. Macromolecular bioscience, 7, 128-135.
Grover, S. P. P., & Baldock, J. A. (2010). Carbon decomposition in a peat from the Australian Alps. European Journal of Soil Science, 61, 217–230.
Halverson, L. J., Jones, T. M., & Firestone, M. K. (2000). Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci. Soc. Am. J., 64, 1630.
Hamamoto, S., Dissanayaka, S. H., Kawamoto, K., Nagata, O., Komtatsu, T., & Moldrup, P. (2015). Transport properties and pore-network structure in variability-saturated Sphagnum peat soil. Eur. J. Soil Sci., 67, 121-131.
Hammecker, C., Antonino, A., Maeght, J. L., & Boivin, P. (2003). Experimental and numerical study of water flow in soil under irrigation in northern Senegal: Evidence of air entrapment. European Journal of Soil Science, 54, 491-503.
Hilbert, D. W., Roulet, N. T., & Moore, T. R. (2000). Modelling and analysis of peatlands as dynamical systems. Journal of Ecology, 88, 230–242.
Hirsch, A., Trumbore, S., & Goulden, M. (2004). The surface CO2 gradient and pore‐space storage flux in a high‐porosity litter layer. Tellus B, 56, 312-321.
Hogg, E. H., Lieffers, V. J., & Wein, R.W. (1992). Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire. Ecological Applications, 2, 298.
Holden, J., Evans, M. G., Burt, T. P., & Horton, M. (2006): Impact of land drainage on peatland hydrology. Journal of Environmental Quality, 35(5), 1764–1778.
Holden, J., & Burt, T. P. (2002). Piping and pipeflow in a deep peat catchment. Catena, 48, 163-199.
Holden, J. (2005). Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 363(1837), 2891-2913.
Hommeltenberg, J., Schmid, H. P., Drösler, M., & Werle, P. (2014). Can a bog drained for forestry be a stronger carbon sink than a natural bog forest? Biogeosciences, 11(13), 3477–3493.
Hooijer, A., Page, S., Jauhiainen, J., Lee, W. A., Lu, X. X., Idris, A., & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9(3), 1053–1071.
Hoyos-Santillan, J., & Lomax, B. (2016). Quality not quantity: Organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry, 103, 86-96.
Iiyama, I., & Hasegawa, S. (2005), Gas Diffusion Coefficient of Undisturbed Peat Soils. Soil Science & Plant Nutrition, 51(3), 431-435.
IPCC-Intergovernmental Panel on Climate Change. (1997). Revised 1996 Guidelines for National Greenhouse Gas Inventories. OECD, Paris.
Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J., & Vasanders, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11, 1788–1797.
Jaynes, D. B., & Rogowski, A. S. (1983). Applicability of Fick's Law to Gas Diffusion. Soil Science Society of America Journal, 47, 10.2136
Joabsson, A., & Christensen, T. R. (2001). Methane emissions from wetlands and their relationship with vascular plants: An Arctic example. Global Change Biology, 7, 919-932.
Kamai, T., & Weisbrod, N., & Dragila, M. (2009). Impact of ambient temperature on evaporation from surface-exposed fractures. Water Resour. Res. 45.
Kempf, B., & Bremer, E. (1998). Uptake and synthesis of compatible solutes as microbial stress responses to highosmolality environments. Archives of Microbiology, 170, 319-330.
Kimmel, K., & Mander, U. (2010). Ecosystem services of peatlands: Implications for restoration. Progress in Physical Geography - Prog Phys Geog., 34, 491-514.
Klotzbücher, T., Kaiser, K., & Guggenberger, G., Gatzek, C., Kalbitz, K. (2011). A new conceptual model for the fate of lignin in decomposing plant litter. Ecology, 92, 1052-62.
Konnerup, D., Sorrell, B. K., & Brix, H. (2010). Do tropical wetland plants possess convective gas flow mechanisms? New Phytologist, 191, 379–386.
Krull, E. S., Skjemstad, J. O., & Baldock, J. A. (2004). Functions of Soil organic matter and the effect on soil properties. CSIRO Land and Water, PMB2, Glen Osmond SA 5064. GRDC Project No CSO 00029. Residue, Soil Organic Carbon and Crop Performance.
Kuang, X., Jiao, J. J., Zhang, K., & Mao, D. (2014). Air and water flows induced by pumping tests in unconfined aquifers with low-permeability zones. Hydrol Process, 28(21), 5450–64.
Labadz, J., Allott, T., Evans, M., Butcher, D., Billett, M., … Hart, R. (2010). Peatland Hydrology: Draft Scientific Review. IUCN UK Peatland Programme.
Laine, A., Sottocornola, M., Kiely, G., Byrne, K. A., Wilson, D., & Tuittila, E. S. (2006). Estimating net ecosystem exchange in a patterned ecosystem: Example from blanket bog. Agricultural and Forest Meteorology, 138, 231–43.
Laine, M., & Strömmer, R., & Arvola, L. (2013). Nitrogen Release in Pristine and Drained Peat Profiles in Response to Water Table Fluctuations: A Mesocosm Experiment. Applied and Environmental Soil Science, 2013, 1-7.
Lane, S. N., Brookes, C. J., Hardy, R. J., Holden, J., James, T. D., Kirkby, M. J., McDonald, A. T., Tayefi, V., & Yu, D. (2003). Land management, flooding and environmental risk: new approaches to a very old question. In Proc. Chartered Institution of Water Environmental Management National Conf.: the environment–visions, values and innovation. Harrogate, 10–12 September 2003.
Larionova, A., Yevdokimov, I., Kurganova, I., Sapronov, D. V., Kuznetsova, L. G., & Gerenju, V. O. (2003). Root respiration and its contribution to the CO2 emission from soil. Eurasian Soil Science, 36, 173-184.
Le Mer, J., & Roger, P., (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37, 25-50.
MacDonald, G. M., Beilman, D. W. Kremenetski, K.V., Sheng, Y., Smith, L. C., & Velichko, A. A. (2006). Rapid early development of the circumarctic peatlands and atmospheric CH4 and CO2 variations. Science, 314(5797), 285–288.
Maier, M., & Schack-Kirchner, H. (2014). Using the gradient method to determine soil gas flux: a review. Agricultural and Forest Meteorology, 192, 78–95.
Maier, M., Schack-Kirchner, H., Hildebrand, E. E., & Schindler, D. (2011). Soil CO2 efflux vs. soil respiration: Implications for flux models. Agricultural and Forest Meteorology, 151, 1723-1730.
Maier, M., Schack-Kirchner, H., & Hildebrand E. (2010). Soil respiration vs. soil CO2 efflux: the role of CO2 storage flux in soil respiration models. Agricultural and Forest Meteorology, 151, 1723–1730.
Massman, J., & Farrier, D. (1992). Effects of Atmospheric Pressures on Gas Transport in the Vadose Zone. Water Resources Research, 28, 777-791.
Massman, W. J., Sommerfeld, R. A. Mosier, R. A., Zeller, K. F., Hehn, T. J., & Rochelle S. G. (1997). A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4, through layered snowpacks. J. Geophys. Res, 10, 851-863.
McVeigh P., Sottocornola M., Foley N., Leahy P., & Kiely, G. (2014). Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric. Forest Meteorol, 194, 8–19.
Millard, P. (1988). The accumulation and storage of nitrogen by herbaceous plants. Plant, Cell & Environment, 11, 1–8,
Moore, T. R., & M. Dalva. (1997). Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology & Biochemistry, 29,1157–1164.
Nachshon, U., Weisbrod, N., & Dragila, M. I. (2008). Quantifying air convection through surface-exposed fractures: A laboratory study. Vadose Zone Journal, 7, 948–956.
Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A., … Lindroth, A. (2008). Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes Glob. Change Biol, 14, 2317–32.
Nilsson, M., & Bohlin, E. (1993). Methane and carbon dioxide concentrations in bogs and fens - with special reference to the effects of the botanical composition of the peat. Journal of Ecology, 81, 615–625.
Olson, D. M., Griffis, T. J., Noormets, A., Kolka, R., & Chen, J. (2013). Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. Journal of Geophysical Research Biogeosciences, 118, 226–238
Orchard, V., & Cook, F. (1983). Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15, 447-453.
Orem, W. H., Hatcher, P. G., & Spiker, E. C. (1986). Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda. Geochim. Cosmochim. Acta, 50, 609–618.
Owen, K. E., Tenhunen, J., Reichstein, M., Wang, Q., Falge, E., Geyer, R., … Vogel, C. (2007). Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob. Change Biol., 13, 734–760
Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., & Stringer, L. (Eds.) (2008). Assessment on Peatlands, Biodiversity and Climate Change: Main Report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen
Phillips, S., Rouse, G. E., & Bustin, R. M. (1997). Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 301–338.
Pihlatie, M., Pumpanen, J., Rinne, J., Ilvesniemi, H., Simojoki, A., Hari, P., & Vesala, T., (2007). Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus B, 59, 458 - 469.
Pingintha, N., Leclerc, M. Y., Beasley, J. P., Zhang, G. S., & Senthong, C. (2010). Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus Series B-Chemical & Physical Meteorology, 62, 47-58.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinisto, S., … Hari, P. (2004). Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. Forest Meteorol., 123, 159–176
Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na1/H1 exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 99, 8436–8441
Rey, A. (2015). Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biology 21, 1752–1761
Rey, A., Belelli-Marchesini, L., Etiope, G., Papale, D., Canfora, E., Valentini, R., & Pegoraro, E. (2013). Partitioning the net ecosystem carbon balance of a semiarid steppe into biological and geological components. Biogeochemistry, 118, 83.
Rey, A., L. Belelli-Marchesini, A., Were, P., Serrano-ortiz, G., Etiope, D., Papale, F., Domingo, E., & Pegoraro. (2012). Wind as a main driver of the net ecosystem carbon balance of a semiarid Mediterranean steppe in the South East of Spain, Global Change Biol., 18, 539–554.
Risk, D., Kellman, L., & H. Beltrami (2008). A new method for in situ soil gas diffusivity measurement and applications in the monitoring of subsurface CO2 production. Journal of Geophysical Research, 113, 10.
Riveros-Iregui, D. A., B. L. McGlynn, Epstein, H. E., & Welsch, D. L. (2008). Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes. J. Geophys. Res., 113.
Romanowicz, E. A., Siegel, D. I., & Glaser, P. H. (1993). Hydraulic reversals and episodic methane emissions during drought cycles in mires. Geology, 21, 231–234.
Rosenzweig, C. G., Casassa, D. J., Karoly, A., Imeson, C., Liu, A., Menzel, S., …Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. Climate Change 2007: Impacts, Adaptation and Vulnerability. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 79-131). Cambridge University Press, Cambridge, UK.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys, E. R., & Bubier, J. (2007). Contemporary carbon balance and late holocene carbon accumulation in a northern peatland. Global Change Biology, 13, 397-411
Roulet, N., Lafleur M., Afleur, P., Pierre, R., Moore, T., Humphreys, E., & Bubier, J. (2007). Contemporary carbon balance an late Holocene carbon accumulation in a northern peatland. Global Change Biology, 13, 397 - 411
Sánchez-Cañete, E., Barron-Gafford, G., & Chorover, J., (2018). A considerable fraction of soil-respired CO2 is not emitted directly to the atmosphere. Scientific Reports, 8, 10.
Schack-Kirchner, H., Edgar K., & Hildebrand, E. (2011). Finite-Element Regression to Estimate Production Profiles of Greenhouse Gases in Soils. Vadose Zone Journal, 10, 169-183.
Schimel J., Balser T. C., & Wallenstein M. (2007). Microbial stress response physiology and its implications for ecosystem function. Ecology, 88, 1386–94.
Schreeg, L. A., Mack, M. C., & Turner, B. L. (2013). Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry, 113, 507-524.
Sebacher, I. D., Harriss, R. C., & Bartlett, K. B. (1985). Methane Emission to the Atmosphere Through Aquatic Plants. J. Environ. Quality, 14, 40–46.
Shackelford, C. D., Daniel, D. E., & Liljestrand, H. M. (1989). Diffusion of inorganic chemical species in compacted clay soils. Journal of Contaminant Hydrology, 4, 241-273.
Sjögersten, S., Cheesman, A., Lopez, O., & Turner, B., (2011). Biogeochemical along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry, 104, 147-163.
Sottocornola, M., & G. Kiely (2005). An Atlantic blanket bog is a modest CO2 sink. Geophys. Res. Lett., 32, L23804.
Sullivan, B., Kolb, T., Hart, S., Kaye, J., Hungate, B., Dore, S., & Montes-Helu, M. (2011). Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry, 104, 251-265.
Takle, E. S., Massman, W. J., Brandle, J. R., Schmidt, R. A., Zhou, X., Litvina, I. V., Garcia, R., Doyle, G., & Rice. C. W. (2004): Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric. For. Meteorology, 124, 193–206.
Tang, J., Baldocchi, D.D., Qi, Y., & Xu. L.,(2003): Assessing soil CO2 effl ux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric. For. Meteorology, 118, 207–220.
Tiemann, L. K., & Billings, S. A. (2012). Tracking C and N flows through microbial biomass with increased soil moisture variability. Soil Biology and Biochemistry, 49, 11-22.
Tranvik, L. R. (1992). Allochtonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia, 229, 107–14.
Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A., (2002). Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. Holocene, 12, 69–80.
Vachaud, G., Gaudet, J., & Kuráž, V. (1974). Air and water flow during ponded infiltration in a bounded column of soil. Journal of Hydrology, 22, 89-108.
Vancampenhout, K., Wouters, K., & Caus, A. (2008). Fingerprinting of soil organic matter as a proxy for assessing climate and vegetation changes in last interglacial palaeosols (Veldwezelt, Belgium). Quat Res, 69, 145–162.
Vargas, R., & Baldocchi, D., Allen, M., Bahn, M., Black, T., Collins, S., Curiel, Y. J., Hirano, T., Jassal, R., Pumpanen, J., & Tang, J. (2010). Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux. Ecological Applications, 20, 1569-1582.
Vries, F., Williams, A., Stringer, F., Willcocks, R., McEwing, R., Langridge, H., & Straathof, A. (2019). Changes in root exudate induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling, New Phytologist, 224, 10.
Wang, W., Tong, C., & Zeng, C., (2010): Stoichiometry characteristics of carbon, nitrogen, phosphorus and anaerobic carbon decomposition of wetland soil of different texture. China Environ. Sci., 30, 1369-1374.
Wang, Z., Feyen, J., Martinus T., Van Genuchten, M., & Nielsen, D., (1998). Air entrapment effects on infiltration rate and flow instability. Water Resources Research, 34, 213-222.
Webb, S. W., & Pruess, K. (2003). The use of Fick's law for modelling trace gas diffusion in porous media. Transport in porous media, 51, 327-341.
Wheater, H. S., Reynolds, B., McIntyre, N., Marshall, M., Jackson, B., Frogbrook, Z., Solloway, I., Francis, O., & Chell, J. (2008). Impacts of land management on flood risk: FRMRC RPA2 at Pontbren, FRMRC Final Report and UFMO.
Williams, M. A., & Xia, K. (2009). Characterization of the water soluble soil organic pool following the rewetting of dry soil in a drought-prone tallgrass prairie. Soil Biology and Biochemistry, 41, 21-28.
Wolf, S., Eugster, W., Potvin, C., & Buchmann, N (2011). Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama. Agr. Forest Meteorology, 151, 1139–1151.
Wood, B. D., Keller, C. K., & Johnstone, D. L. (1993). Carbon dioxide as a measure of microbial activity in the unsaturated zone. Water Resour. Res., 29, 647-659.
Wood, W. W., & Petrairis, M. J. (1984). Origin and distribution of carbon dioxide in the unsaturated zone of the southern high plains of Texas. Water Resour. Res., 20, 1193-1208.
Wright E. (2011). CO2 and CH4 emissions in relation to nutrient cycling and decomposition in a neotropical peatland, Panama. University of Nottingham for the degree of Doctor of Philosophy.
Wu, J., Roulet, N. T., Sagerfors, J., & Nilsson, M. B. (2013). Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill Wetland Model (MWM). J. Geophys. Res.-Biogeosci., 118, 795– 807.
Ying, M., S. Feng, Z. Huo, & X. Song (2011). Application of the SWAP model to simulate the field water cycle under deficit irrigation in Beijing, China. Math. Comput. Model, 54, 1044–1052
Yu, Z. (2011), Holocene carbon flux histories of the world’s peatlands: Global carbon-cycle implications. Holocene, The Holocene., 21, 5.
Yule CM, & Gomez LN, (2009). Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Ecology and Management, 17, 231–241.
Zhang, Deqiang, Hui, Dafeng, Luo, Yiqi, & Zhou, Guoyi. (2008). Rates of litter decomposition in terrestrial ecosystems, global patterns and controlling factor. Journal of Plant Ecology, 1, 10.
Zoltai, S., & Martikainen, P. (1996). The role of forested peatlands in the global carbon cycle Forest Ecosystems, Forest Management and the Global Carbon Cycle (NATO ASI) ed M J Apps and D T Price (Heidelberg: Springer) 47–58.
Published
2020-11-12
Section
Articles