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Abstract 
Objective. Under certain circumstances, the results of multiple investigations – particularly, rigorously-designed 
trials, can be summarized by systematic reviews and meta-analyses. However, the results of properly conducted 
meta-analyses can but need not be stronger than single investigations, if (publication) bias is not considered to a 
necessary extent. 
Methods. In assessing the significance of publication bias due to study design simple to handle statistical measures 
for quantifying publication bias are developed and discussed which can be used as a characteristic of a meta-
analysis. In addition, these measures may permit comparisons of publication biases between different meta-
analyses. 
Results. Various properties and the performance of the new measures of publication bias are studied and illustrated 
using simulations and clearly described thought experiments. As a result, individual studies can be reviewed with 
a higher degree of certainty. 
Conclusions. Publication bias due to study design is a serious problem in scientific research, which can affect the 
validity and generalization of conclusions. The index of unfairness and the index of independence are of use to 
quantify publication bias and to improve the quality of systematic reviews and meta-analyses. 
Keywords: study design, study type, measuring technique, publication bias 
1. Introduction 
Objective reality is determined by various events too while some of them occur haphazardly, unpredictably, or by 
chance. In point of fact, our understanding of both chance and randomness, as we ordinarily think of it and its 
close connection to probability theory open up the possibility to handle both by specific methods in the light of 
empirical facts. However, relating facts and hypotheses of a particular kind or extrapolating from a possible data 
set to predictions and general facts is not free of errors (the problem of induction). The data as recordings of events 
or of observations, called the sample, the sample data and published by a scientific study are more or less only a 
set of measurements of individuals from a population. The sample data actually obtained by a study or an 
experiment may agree perfectly with the population but the same need not. The quality of sample data has a 
fundamental impact on the validity of the inferences drawn and how believable a hypothesis is, whether it is 
justified to rely on the hypothesis in our decisions or not. Various types of study designs in research activity should 
ensure the most rigorous visibility and discoverability of causal mechanisms too. Thus far, before any statistical 
analyses of a data set is performed, it is appropriate to provide some evidence whether the data set used is of use 
at all. With these concerns firmly in mind while adopting a bird's-eye view, the problem of study design with its 
relation to causal and conditional analysis will be covered by this article. 
2. Material and Methods 
In one way or another, testing hypotheses and theories about the natural world is not completely free of errors. 
Still, when all goes well, systematic observation and experimentation should assure that different scientists at 
different times and places are able to generate to some extent the same scientific knowledge. 
2.1 Definitions 
Definition 2.1.1 (The sample space) 
Let the sample space denote a set or a collection of all different but possible outcomes of an experiment at a certain 
Bernoulli trial t or point in space time t. Each possible single outcome xt of the experiment is said to be a member 
of the sample space, or to belong to the space S(X). A single outcome xt of an experiment S(X) is a member of 
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S(X) and denoted symbolically by the relation xt ∈ S(X). A set Y is contained in another set X if every element 
of the set Y also belongs to the set X. This relation is expressed symbolically by the expression Y ⊂ X, which is 
the set-theoretic expression for saying that Y is a subset of X. A subset of X that contains no elements is called an 
empty set, or null set, and it is denoted by the symbol ∅. In a given experiment, a number p(xt) is assigned to each 
event xt in the sample space S which indicates the probability that xt will occur. If the event xt is certain to occur, 
then the probability of that event is p(xt)=1. 
Definition 2.1.2 (The 2x2 Table) 
A two by two table (also called a contingency table, a notion first used by Karl Pearson (Pearson, 1904) in 1904) 
is a useful tool for examining relationships between Bernoulli (i. e. Binomial) distributed random variables. 
Consider the case of a Bernoulli distributed random variable At occurring/existing et cetera with the probability 
p(At) at the Bernoulli trial or (period of) time t. Furthermore, consider the case of another Bernoulli distributed 
random variable Bt occurring/existing et cetera with the probability p(Bt) at the same Bernoulli trial or (period of) 
time t. Furthermore, let p(at)= p(At ∩ Bt) denote the joint probability distribution of At and Bt at the same Bernoulli 
trial or (period of) time t. The following table (Table 1) may show the relationships in more details. 
 
Table 1. The probabitlities of a contingency table 

  Conditioned B 
(“Curvature”)  

  Yes = +1 No = +0 Total
Condition A 
(“Momentum”)

Yes =+1 p(at)  p(bt) p(At)
No = +0 p(ct) p(dt) p(At)

 Total p(Bt) p(Bt) 1 
 
In this context, it is per definitionem 

௧ܣ൫  ൯ ≡ ൫ܽ௧ ൯ + ൫ܾ௧ ൯ = 1 − ௧ܣ൫ ൯൫ܤ௧ ൯ ≡ ൫ܽ௧ ൯ + ൫ܿ௧ ൯ = 1 − ௧ܤ൫ ൯൫ܽ௧ ൯ ≡ ௧ܣ൫ ∩ ௧ܤ ൯ = 1 − ൫ܾ௧ ൯ − ൫ܿ௧ ൯ − ൫݀௧ ൯+1 ≡ ൫ܽ௧ ൯ + ൫ܾ௧ ൯ + ൫ܿ௧ ൯ + ൫݀௧ ൯+1 ≡ ௧ܣ൫ ൯ + ௧ܣ൫ ൯ = ௧ܤ൫ ൯ + ௧ܤ൫ ൯൫ܤ௧ ൯ + ൫Λ௧ ൯ ≡ ௧ܣ൫ ൯ = 1 − ௧ܤ൫ ൯ + ൫Λ௧ ൯൫ܣ௧ ൯ = 1 − ቀ1 − ௧ܤ൫ ൯ + ൫Λ௧ ൯ቁ = ௧ܤ൫ ൯ − ൫Λ௧ ൯൫Λ௧ ൯ = ௧ܣ൫ ൯ − ௧ܤ൫ ൯ = ൫ܾ௧ ൯ − ൫ܿ௧ ൯൫ܾ௧ ൯ + ൫ܿ௧ ൯ = ቀ2 × ൫ܿ௧ ൯ቁ + ൫Λ௧ ൯ = 1 − ൫ܽ௧ ൯ − ൫݀௧ ൯
 (1)

while +1 denotes the normalized sample space of At and Bt. Under conditions of Einstein’s (A. Einstein, 1916) 
general (I. Barukčić, 2016c, 2016a) theory of relativity, Λ indicates the cosmological “constant” (Albert Einstein, 
1917). Einstein’s field equations known as Rμν – (R/2) ×gμν + Λ×gμν = (4×2π×γ/c4) ×Tμν can be expressed in terms 
of probability theory as p(Bt) + p(Λt) = 1 - p(Bt) + p(Λt) = p(At) at each point in space-time t while p(at), p(bt), 
p(ct) and p(dt) may denote the four basic fields of nature. Multiplying by the Ricci tensor Rμν, we obtain the 
geometrized form of Einstein’s field equation as Rμν - p(Bt)×Rμν + p(Λt)×Rμν = p(At)×Rμν where p(At)×Rμν = 
(4×2π×γ/c4)×Tμν and p(Bt)×Rμν = (R/2)×gμν  and Λ×gμν = p(Λt)×Rμν. In this context, a probability tensor (I. 
Barukčić, 2016a) is needed. Under circumstances were the probability of an event is constant from trial to trial (i. 
e. Binomial distribution), the relationships before simplifies. We obtain some of the relationships per definitionem 
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ܣ  ≡ ݊ × ൫ܽ௧ ൯ + ݊ × ൫ܾ௧ ൯ = ݊ × ௧ܣ൫ ൯ܤ ≡ ݊ × ൫ܽ௧ ൯ + ݊ × ൫ܿ௧ ൯ = ݊ × ௧ܤ൫ ൯ܽ ≡ ݊ × ൫ܽ௧ ൯ = ݊ × ௧ܣ൫ ∩ ௧ܤ ൯ܾ ݊ × ൫ܾ௧ ൯ܿ ݊ × ൫ܿ௧ ൯݀ ݊ × ൫݀௧ ൯݊ ≡ ݊ × ൫ܽ௧ ൯ + ݊ × ൫ܾ௧ ൯ + ݊ × ൫ܿ௧ ൯ + ݊ × ൫݀௧ ൯݊ ≡ ݊ × ௧ܣ൫ ൯ + ݊ × ௧ܣ൫ ൯ = ݊ × ௧ܤ൫ ൯ + ݊ × ௧ܤ൫ ൯
 (2)

The meaning of the abbreviations a, b, c, d, n et cetera are explained by following 2 by 2-table (Table 2). 

 
Table 2. The sample space of a contingency table 

  Conditioned B 
(Outcome)  

  Yes = +1 No = +0 Total
Condition A 
(risk factor) 

Yes =+1 a  b A 
No = +0 c d A 

 Total B B n 
 
Definition 2.1.3 (Sufficient condition (conditio per quam)) 
The mathematical formula of the sufficient condition relationship of a population is defined as 

௧ܣ൫  → ௧ܤ ൯ ≡ ൫ܽ ൯ + ൫ܿ ൯ + ൫݀ ൯݊ = 1
≡ ൫ܽ௧ ൯ + ൫ܿ௧ ൯ + ൫݀௧ ൯
≡ ൫ܽ௧ ൯ + ቀ1 − ௧ܣ൫ ൯ቁ
≡ ቀ൫ܤ௧ ൯ + ൫݀௧ ൯ቁ
≡ +1.

 (3)

Definition 2.1.4 (The X² Test of Goodness of Fit of a Sufficient Condition) 
The chi-square value of a conditio per quam relationship using the continuity correction (Yates, 1934), is derived 
(Barukčić, 2018) as 

 ܺଶ ቀ൫ܣ → ܤ ൯|ܣ ቁ ≡ ቀ൫ܾ ൯ − ൫1 2ൗ ൯ቁଶ
ܣ + 0 = 0 (4)

or alternatively as 
 ܺଶ ቀ൫ܣ → ܤ ൯|ܤ ቁ ≡ ቀ൫ܾ ൯ − ൫1 2ൗ ൯ቁଶ

ܤ + 0 = 0 (5)

Definition 2.1.5 (Necessary condition (conditio sine qua non)) 
The mathematical formula of the necessary condition relationship of a population is defined as 
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௧ܣ൫  ← ௧ܤ ൯ ≡ ൫ܽ ൯ + ൫ܾ ൯ + ൫݀ ൯݊ = 1
≡ ൫ܽ௧ ൯ + ൫ܾ௧ ൯ + ൫݀௧ ൯
≡ ൫ܽ௧ ൯ + ቀ1 − ௧ܤ൫ ൯ቁ
≡ ቀ൫ܣ௧ ൯ + ൫݀௧ ൯ቁ
≡ +1.

 (6)

Definition 2.1.6 (The X² Test of Goodness of Fit of a Necessary Condition) 
Using the continuity correction, the chi-square value of a conditio sine qua non distribution follows as 

 ܺଶ ቀ൫ܣ ← ܤ ൯|ܤ ቁ ≡ ቀ൫ܿ ൯ − ൫1 2ൗ ൯ቁଶ
ܤ + 0 = 0 (7)

Depending upon the study design, another method to calculate the chi-square value of a conditio sine qua non 
distribution (while using the continuity correction) is defined as 

 ܺଶ ቀ൫ܣ ← ܤ ൯|ܣ ቁ ≡ ቀ൫ܿ ൯ − ൫1 2ൗ ൯ቁଶ
ܣ + 0 = 0 (8)

Definition 2.1.7 (The exclusion relationship) 
The mathematical formula of the exclusion relationship of a population is defined as 

௧ܣ൫  ௧ܤ| ൯ ≡ ൫ܿ ൯ + ൫ܾ ൯ + ൫݀ ൯݊ = 1
≡ ൫ܿ௧ ൯ + ൫ܾ௧ ൯ + ൫݀௧ ൯
≡ ൫ܿ௧ ൯ + ቀ1 − ௧ܤ൫ ൯ቁ
≡ ቀ1 − ௧ܣ൫ ൯ + ൫ܾ௧ ൯ቁ
≡ +1.

 (9)

Definition 2.1.8 (The X² Test of Goodness of Fit of the Exclusion Relationship) 
The chi square value with degree of freedom 2-1=1of the exclusion relationship (Barukčić, 1989; Barukčić, 1997; 
Barukčić, 2005; Barukčić, 2006; Barukčić, 2009; Barukčić, 2011; Barukčić, 2012; Barukčić, 2016; Barukčić, 2017; 
Barukčić, 2018) with a continuity correction can be calculated as 

 ܺଶ ቀ൫ܣ ܤ| ൯|ܣ ቁ ≡ ቀ൫ܽ ൯ − ൫1 2ൗ ൯ቁଶ
ܣ + 0 = 0 (10)

Depending upon the study design, another method to calculate the chi-square value of the exclusion relationship 
is defined as 
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 ܺଶ ቀ൫ܣ ܤ| ൯|ܤ ቁ ≡ ቀ൫ܽ ൯ − ൫1 2ൗ ൯ቁଶ
ܤ + 0 = 0 (11)

The chi square Goodness of Fit Test of the exclusion relationship examines how well observed data compare with 
the expected theoretical distribution of an exclusion relationship. 
 
Definition 2.1.9 (Necessary and sufficient condition) 
The mathematical formula of the necessary and sufficient condition relationship of a population is defined as 

௧ܣ൫  ↔ ௧ܤ ൯ ≡ ൫ܽ ൯ + ൫݀ ൯݊ = 1
≡ ൫ܽ௧ ൯ + ൫݀௧ ൯
≡ ቀ൫ܣ௧ ൯ − ൫ܾ௧ ൯ቁ + ൬ቀ1 − ௧ܣ൫ ൯ቁ − ൫ܿ௧ ൯൰
≡ ቀ1 − ൫ܾ௧ ൯ − ൫ܿ௧ ൯ቁ
≡ +1.

 (12)

Definition 2.1.10 (The X² Test of Goodness of Fit of the necessary and sufficient condition) 
Using the continuity correction, the chi-square value of the necessary and sufficient condition can be calculated as 

 ܺଶ ൫ܣ ↔ ܤ ൯ ≡ ቀ൫ܿ ൯ − ൫1 2ൗ ൯ቁଶ
B + ቀ൫ܾ ൯ − ൫1 2ൗ ൯ቁଶ

ܤ = 0 (13)

The chi-square value of the necessary and sufficient condition distribution (while using the continuity correction) 
be defined as 

 ܺଶ ൫ܣ ↔ ܤ ൯ ≡ ቀ൫ܿ ൯ − ൫1 2ൗ ൯ቁଶ
ܣ + ቀ൫ܾ ൯ − ൫1 2ൗ ൯ቁଶ

ܣ = 0 (14)

Definition 2.1.11 (Either At or Bt relationship) 
The mathematical formula of the either At or Bt relationship of a population is defined as 

௧ܣ൫  > −< ௧ܤ ൯ ≡ ൫ܾ ൯ + ൫ܿ ൯݊ = 1
≡ ൫ܾ௧ ൯ + ൫ܿ௧ ൯
≡ ቀ൫ܣ௧ ൯ − ൫ܽ௧ ൯ቁ + ൬ቀ1 − ௧ܣ൫ ൯ቁ − ൫݀௧ ൯൰
≡ ቀ1 − ൫ܽ௧ ൯ − ൫݀௧ ൯ቁ
≡ +1.

 (15)

Definition 2.1.12 (The X² Test of Goodness of Fit of the either At or Bt relationship) 
Using the continuity correction, the chi-square value of the either At or Bt relationship can be defined as 
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 ܺଶ ൫ܣ > −< ܤ ൯ ≡ ቀ൫ܽ ൯ − ൫1 2ൗ ൯ቁଶ
B + ቀ൫݀ ൯ − ൫1 2ൗ ൯ቁଶ

ܤ = 0 (16)

Another method to calculate the chi-square value of the either At or Bt relationship (while using the continuity 
correction) can be defined as 

 ܺଶ ൫ܣ > −< ܤ ൯ ≡ ቀ൫ܽ ൯ − ൫1 2ൗ ൯ቁଶ
ܣ + ቀ൫݀ ൯ − ൫1 2ൗ ൯ቁଶ

ܣ = 0 (17)

Definition 2.1.13 (The Chi-square goodness-of fit test of two single events)  
The Chi-Square goodness-of fit test as proposed by Karl Pearson (Pearson, 1900) is of use in our everyday life too. 
Thus far, let xt denote the value of a random variable X at a certain point in space-time t. Let us determine the 
value of the same random variable X under identical conditions some time later i. e. at the point in space-time t+1. 
Has there been any significant change of the value of this single random variable from t to t+1? The chi-square 
goodness of fit test can be applied to determine whether (sample distribution) data observed are consistent with 
(theoretical distribution) hypothesized data. The degrees of freedom (d.f.) of a chi-square goodness of fit test is 
equal to the number of levels (k) of the categorical variable minus 1, in this case d.f. = 2-1 = 1. In general, under 
these assumptions, the chi-square goodness of fit test is given by 

 

௨௧ௗଶ ≡ ቀ൫ݔ௧ାଵ൯ − ൫ݔ௧ ൯ቁଶ
൫ݔ௧ ൯ + ቀ൫ݔ௧ ൯ − ൫ݔ௧ ൯ቁଶ

൫ݔ௧ ൯ = ቀ൫ݔ௧ାଵ൯ − ൫ݔ௧ ൯ቁଶ
൫ݔ௧ ൯ + 0 = 0 (18)

Example. 
An Epstein-Barr virus (EBV) infection can be monitored to some extent by immunoglobulin G (IgG) antibodies 
to EBV viral capsid antigens (VCA). A physician is prescribing a drug regimen to cure an EBV infection and tries 
to get some evidence (α = .0455) whether the drugs prescribed are of any use. The EBV VCA IgG titer before the 
therapy was 100 I.E/ml. (t =1). After three months of therapy, the EBV titer declined to 50 I.E./ml. Is the therapy 
of any use? The X2 critical at α = .0455 is X2 (critical) = 4. Thus far, if the X2 (calculated) is greater than 4, there 
is some evidence that the therapy is of help, even if one single patient is regarded. We obtain the following result. 

 

௨௧ௗଶ ≡ ቀ൫ݔ௧ାଵ൯ − ൫ݔ௧ ൯ቁଶ
൫ݔ௧ ൯ + 0 = ൫ሺ100ሻ − ሺ50ሻ൯ଶሺ100ሻ + 0 = ሺ2500ሻሺ100ሻ + 0 = 25 (19)

Conclusion. The therapy prescribed is of help. Thus far, a therapy which is of help for one patient, can be of help 
for other patients too. 
Definition 2.1.14 (Independence) 
In the case of independence (Kolmogoroff, 1933; Moivre, 1718) of At and Bt it is generally valid that 
 

௧ܣ൫  ∩ ௧ܤ ൯ ≡ ௧ܣ൫ ൯ × ௧ܤ൫ ൯ (20) 
 
Definition 2.1.15 (The Mathematical Formula of the Causal Relationship k) 
The mathematical formula of the causal relationship k (I. Barukčić, 2018d, 1989, 2011, 2016b, 2016c, 2016c, 2017, 
2018b, 2018c, 2018a, 2018d; K. Barukčić, Barukčić, & Barukčić, 2018) is defined for every single event, at every 
single Bernoulli trial t, as 

 ݇൫ܣ௧ , ௧ܤ ൯ ≡ ௧ܣ൫ ܤ௧ ൯ − ቀ൫ܣ௧ ൯ × ௧ܤ൫ ൯ቁට൫ܣ௧ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ × ௧ܤ൫ ൯ × ቀ1 − ௧ܤ൫ ൯ቁమ  (21)

where At denotes the cause and Bt denotes the effect. Under some certain circumstances, the chi-square distribution 
can be applied to determine the significance of causal relationship k. Again, it necessary to point out that neither 
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Pearson’s concept of correlation r nor Pearson’s concept of φ is identical with causation. The mathematical formula 
of the causal relationship k has nothing to do with Pearson’s methods and is not identical with Pearson’s concept 
of correlation. This has been proved for many times and has been widely discussed in many publications too.  
Definition 2.1.16 (The 95% Confidence Interval of the Causal Relationship k) 
The 95% interval for the causal relationship k was calculated by the formula 

 ቐ݇൫ܣ௧ , ௧ܤ ൯ − ඨ5݊మ ; ݇൫ܣ௧ , ௧ܤ ൯ + ඨ5݊మ ቑ (22)

Definition 2.1.17. (Index of unfairness) 
The index of unfairness (IOU) is defined (I. Barukčić, 2019) as 

ܷܱܫ  ≡ ቌቆܣ + ݊ܤ ቇ − 1ቍ (23)

The range of A is 0 < A < n, while the range of B is 0 < B < n. A study design based on A=B=0 leads to an index 
of unfairness of IOU = (((0+0)/n)-1) = -1. A study design which demands that A=B=n leads to an index of 
unfairness of IOU = (((n+n)/n)-1) = +1. In particular, the range of the index of unfairness is [-1;+1]. In this context 
let us define the following.  
Definition 2.1.18 (The probability of an index of unfairness) 
The probability of an unfairness p(IOU) is defined as 

ሻܷܱܫሺ  ≡ ݁ݐݑ݈ݏܾܣ ቌቆܣ + ݊ܤ ቇ − 1ቍ (24)

Definition 2.1.19 Index of independence (IOI) 
The index of independence (IOI) is defined as 

ܫܱܫ  ≡ ቌቆܣ + ݊ܤ ቇ − 1ቍ (25)

Definition 2.1.20 (The probability of an index of independence) 
The probability of an index of independence p(IOI) is defined as 

ሻܫܱܫሺ  ≡ ݁ݐݑ݈ݏܾܣ ቌቆܣ + ݊ܤ ቇ − 1ቍ (26)

2.2 Material 
Experiment 2.2.1 (Hot plate experiment) 
Research on human participants requires protection at least according to the Declaration of Helsinki issued by the 
World Medical Association (Declaration of Helsinki, 1997). Among other, clearly formulated experimental 
protocols should be approved by independent ethical review boards (ethics committees and institutional review 
boards). The following experiments is only a thought experiment and there is no need for such an approval. Let At 
denote a plate, a Binomial random variable, which can take only two values, either hot = +1 or not hot = +0. A 
hot plate is defined by the fact that the same damages a finger of a human being in a certain way without any 
hesitation. One property of a cold plate is that the same does not damage the finger of a human being in a certain 
way. Let Bt denote an index finger of a human being, a Binomial random variable, which can take only two values, 
either injured = +1 or not injured = +0. Inclusion and exclusion criteria are defined. A placebo group is completely 
identical with the verum group. The experiments are independent and performed under the same conditions et 
cetera. 
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Experiment 2.2.2 (Burning candle experiment) 
Let At denote gaseous oxygen, a Binomial random variable, which can take only two values, either gaseous oxygen 
present = +1 or not gaseous oxygen not present = +0. Gaseous oxygen present means that the amount is enough 
to assure that a candle can burn. Let Bt denote a candle, a Binomial random variable, which can take only two 
values, either a candle is burning = +1 or a candle is not burning = +0.  
3. Results 

Theorem 1. (The index of independence) 

Claim. 

The primary motivation for a study design which investigates the relationship between the events At and Bt can be 
with good grounds, that the events At and Bt are independent of each other. Under the assumption of independence 
of At from Bt and vice versa study design is fair and the data are formally not self-contradictory due to study design 
if the index of independence (IOI) is  

ܫܱܫ  = ቆ൫ܣ + ൯݊ܤ − 1ቇ = +0 (27)

Proof. 

Under the assumption of independence (Kolmogoroff, 1933; Moivre, 1718), it is 

൫ܽ௧  ൯ ≡ ௧ܣ൫ ∩ ௧ܤ ൯ = ௧ܣ൫ ൯ × ௧ܤ൫ ൯ (28)

Rearranging equation, we obtain 

௧ܣ൫  ∩ ௧ܤ ൯൫ܣ௧ ൯ = ௧ܤ൫ ൯ ܽ݊݀ ݕ݈݈ܽݑݍ݁ ௧ܣ൫ ∩ ௧ܤ ൯൫ܤ௧ ൯ = ௧ܣ൫ ൯ (29)

or 

 ቌቆ൫ܣ௧ ∩ ௧ܤ ൯൫ܣ௧ ൯ ቇ − ௧ܤ൫ ൯ቍ = 0 ܽ݊݀ ݕ݈݈ܽݑݍ݁ ݐℎܽݐ ቌቆ൫ܣ௧ ∩ ௧ܤ ൯൫ܤ௧ ൯ ቇ − ௧ܣ൫ ൯ቍ = 0 (30)

or 

 ൮ቆ൫ܣ௧ ∩ ௧ܤ ൯൫ܣ௧ ൯ ቇ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ൫ܣ௧ ൯ ൲ = 0 ܽ݊݀ ൮ቆ൫ܣ௧ ∩ ௧ܤ ൯൫ܤ௧ ൯ ቇ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ൫ܤ௧ ൯ ൲ (31
)

or that 

 ቌቀ൫ܣ௧ ∩ ௧ܤ ൯ቁ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ൫ܣ௧ ൯ ቍ = 0 ܽ݊݀ ቌቀ൫ܣ௧ ∩ ௧ܤ ൯ቁ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ൫ܤ௧ ൯ ቍ (32
)

In other words, under the condition of independence, study design should fulfill among other the requirement that 

 ቌቀ൫ܣ௧ ∩ ௧ܤ ൯ቁ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ൫ܣ௧ ൯ ቍ = ቌቀ൫ܣ௧ ∩ ௧ܤ ൯ቁ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ൫ܤ௧ ൯ ቍ (33)

We define 

 ܺ௧ ≡ ቀ൫ܣ௧ ∩ ௧ܤ ൯ቁ − ቀ൫ܣ௧ ൯ × p൫ܤ௧ ൯ቁ (34)
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while the term is of no further importance for us in this context. The equation above simplifies as 

 ቆ ܺ௧൫ܣ௧ ൯ቇ = ቆ ܺ௧൫ܤ௧ ൯ቇ (35)

or as 

 ܺ௧ × ௧ܤ൫ ൯ = ܺ௧ × ௧ܣ൫ ൯ (36)

Under conditions, where the division by Xt is not possible we define Xt =+1. After the division by Xt the equation 
before simplifies to 

௧ܤ൫  ൯ = ௧ܣ൫ ൯ (37)

In general, it is p(At) = 1 - p(At) or p(Bt) = 1 - p(Bt). The equation before changes to 
௧ܤ൫  ൯ = 1 − ௧ܣ൫ ൯ (38)

and to 

௧ܣ൫  ൯ + ௧ܤ൫ ൯ = +1 (39)

or to 

௧ܣ൫  ൯ = 1 − ௧ܤ൫ ൯ (40)

and to 

௧ܤ൫  ൯ + ௧ܣ൫ ൯ = +1 (41)

In point of fact, there are many ways to design a study, design which assumes the independence of the events At 

and Bt demands under conditions of a Bernoulli distribution that 

௧ܣ൫  ൯ + ௧ܤ൫ ൯ − 1 = 0 (42)

Multiplying by n, the sample size, the index of independence follows as 

 ݊ × ቀ൫ܣ௧ ൯ + ௧ܤ൫ ൯ቁ݊ − 1 = 0 (43)

Under conditions of a Binomial distribution, it is A = n×p(At), B = n×p(Bt). We obtain 

ܫܱܫ  = ܣ + ݊ܤ − 1 = 0 (44)

or equally as 
ܫܱܫ  = ቆ൫ܣ + B൯݊ − 1ቇ = +0 (45)

Quod erat demonstrandum. 
Remark 1. 
An index of independence of IOI = 0 indicates a study design which supports the assumption of an independence 
of the events At and Bt.  
Theorem 2. (The probability of an index of independence) 

Claim. 

The probability of an index of independence, denoted as p(IOI), is 
ሻܫܱܫሺ  = ݁ݐݑ݈ݏܾܣ  ൬൫ܣ௧ ൯ + ൫B൯ − ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ൰ (46)
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Proof. 

The index of independence was derived as  

ܫܱܫ  = ቆ൫ܣ + B൯n − 1ቇ (47)

Under conditions of a Binomial distribution, it is A = n×p(At), B = n×p(Bt) while equally it is 1 = p(At) + p(At) or 
1 = p(Bt) + p(Bt). The index of independence changes under these circumstances to 

ܫܱܫ  =  ቌቀn × ௧ܣ൫ ൯ + n × ൫B൯ቁn − n × ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ݊ ቍ (48)

Simplifying, it is 
ܫܱܫ  =  ൬൫ܣ௧ ൯ + ൫B൯ − ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ൰ (49)

The index of independence indicates a probability measure. To date, probability is a positive number between +0 
and +1, including both numbers. Therefore, we define the probability of an index of independence p(IOI) as 

ሻܫܱܫሺ  = ݁ݐݑ݈ݏܾܣ ൬൫ܣ௧ ൯ + ൫B൯ − ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ൰ = ሻ (50)ܫܱܫሺ ݁ݐݑ݈ݏܾܣ

Quod erat demonstrandum. 
Remark 2. 
The lower the probability p(IOI), the more a study design is able provide evidence of the independence of the 
events At and Bt.  
Theorem 3. (The index of unfairness IOU and the causal relationship k) 

Claim. 

A study with a certain study design which investigates the causal relationship between At and Bt should assure as 
much as possible an IOU near or equal to 0 or 

ܷܱܫ  = ቌቆܣ + ݊ܤ ቇ − 1ቍ ≈ 0 (51)

to reduce the effect of publication bias on the results and conclusions drawn from a systematic review and meta-
analyses with respect to causation. 

Proof. 

In the case of a causal relationship given, it is  

 ห݇൫ܣ௧ , ௧ܤ ൯ห ≡ ௧ܣ൫ ܤ௧ ൯ − ቀ൫ܣ௧ ൯ × ௧ܤ൫ ൯ቁට൫ܣ௧ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ × ௧ܤ൫ ൯ × ቀ1 − ௧ܤ൫ ൯ቁమ
= ௧ܣ൫ߪ , ௧ܤ ൯ߪ൫ܣ௧ ൯ × ௧ܤ൫ߪ ൯ ≡ +1 

(52)

In this context, we define without any changes of the content itself the following. 
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 ܵ ≡ ௧ܣ൫ ܤ௧ ൯ − ቀ൫ܣ௧ ൯ × ௧ܤ൫ ൯ቁ
ܶ ≡ ௧ܣ൫ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ
ܷ ≡ ௧ܤ൫ ൯ × ቀ1 − ௧ܤ൫ ൯ቁ

 (53)

The mathematical formula of the causal relationship k simplifies as  

 ห݇൫ܣ௧ , ௧ܤ ൯ห ≡ ௧ܣ൫ ܤ௧ ൯ − ቀ൫ܣ௧ ൯ × ௧ܤ൫ ൯ቁට൫ܣ௧ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ × ௧ܤ൫ ൯ × ቀ1 − ௧ܤ൫ ൯ቁమ
= ܵ√ܶ × ܷమ ≡ +1 

(54)

In the case of a given causal relationship, it is  

 ܵଶܶ × ܷ = ≡ ห݇൫ܣ௧ , ௧ܤ ൯หଶ = +1 (55)

Rearranging equation, we obtain 

 ܵଶ ≡ ܶ × ܷ × 1 (56)

Rearranging equation again, we obtain 

 ܵଶܶ = ܷ ܽ݊݀ ܵଶܷ = ܶ (57)

or 

 ൭ቆܵଶܶ ቇ − ܷ൱ = 0 ܽ݊݀ ݐℎܽݐ ൭ቆܵଶܷ ቇ − ܶ൱ = 0 (58)

or 

 ൭ቆܵଶܶ ቇ − ܶ × ܷܶ ൱ = 0 ܽ݊݀ ݐℎܽݐ ൭ቆܵଶܷ ቇ − ܶ × ܷܷ ൱ = 0 (59)

or that 

 ቆܵଶ − ሺܶ × ܷሻܶ ቇ = 0 ܽ݊݀ ݐℎܽݐ ቆܵଶ − ሺܶ × ܷሻܷ ቇ = 0 (60)

Under these circumstances, a study design should fulfill the requirement that 

 ቆܵଶ − ሺܶ × ܷሻܶ ቇ = ቆܵଶ − ሺܶ × ܷሻܷ ቇ = 0 (61)

Rearranging equation, it is 

 ቀܵଶ − ሺܶ × ܷሻቁ × ܷ = ቀܵଶ − ሺܶ × ܷሻቁ × ܶ (62)

We define 

 ܺ௧ ≡ ቀܵଶ − ሺܶ × ܷሻቁ (63)
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The equation above simplifies as 

 ܺ௧ × ܷ = ܺ௧ × ܶ (64)

The goal of a study design is not to assure a certain value Xt. Thus far, the variable Xt can be positive, negative or 
even equal to zero, the value of the same is not restricted. Under conditions, where the division by Xt is not possible 
we define Xt =+1. After the division by Xt the equation before simplifies to 

 ܷ = ܶ (65)

or to  

௧ܤ൫  ൯ × ቀ1 − ௧ܤ൫ ൯ቁ = ௧ܣ൫ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ (66)

According to today’s valid rules ( negative × positive = negative) it is 

௧ܤ൫  ൯ − ௧ܤ൫ ൯ଶ = ௧ܣ൫ ൯ − ௧ܣ൫ ൯ଶ (67)

or  

௧ܣ൫  ൯ଶ − ௧ܤ൫ ൯ଶ = ௧ܣ൫ ൯ − ௧ܤ൫ ൯ (68)

Based on today’s understanding of the binomial theorem (or binomial expansion) it is  

௧ܣ൫  ൯ଶ − ௧ܤ൫ ൯ଶ = ቀ൫ܣ௧ ൯ − ௧ܤ൫ ൯ቁ × ቀ൫ܣ௧ ൯ + ௧ܤ൫ ൯ቁ (69)

Simplifying equation, we obtain 

 ቀ൫ܣ௧ ൯ − ௧ܤ൫ ൯ቁ × ቀ൫ܣ௧ ൯ + ௧ܤ൫ ൯ቁ = ௧ܣ൫ ൯ − ௧ܤ൫ ൯ (70)

Under conditions where (p(At) -p(Bt)) = 0, we define (p(At) -p(Bt)) = +1. Thus far, dividing by (p(At) -p(Bt)), it is 

 ቀ൫ܣ௧ ൯ + ௧ܤ൫ ൯ቁ = +1 (71)

Multiplying by the sample size n, it follows that 

 ቀ݊ × ௧ܣ൫ ൯ቁ + ቀ݊ × ௧ܤ൫ ൯ቁ = ݊ (72)

Under conditions of a Binomial distributed random variable, it is n×p(At)= A and n×p(Bt)=B. The equation before 
becomes 

ܣ  + ܤ = ݊ (73)

Dividing by n, it is 

ܣ  + ݊ܤ = +1 (74)

Simplifying, we obtain 

 ቆܣ + ݊ܤ ቇ − 1 = 0 (75)

or 
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ܷܱܫ  = ቌቆܣ + ݊ܤ ቇ − 1ቍ = 0 (76)

Quod erat demonstrandum. 
Remark 3. 
Systematic reviews and meta-analyses are a very useful method for generating some evidence from different 
studies and to draw reliable conclusions. However, are there any factors which have influence on the chance of a 
study being published by a scientific journal? Many times,  statistically significant results are more likely to be 
published, causing publication bias in meta-analysis of published studies (Kicinski, Springate, & Kontopantelis, 
2015). An important aspect of a rigorous systematic review is detecting publication bias and preventing an 
incorrect conclusion and reducing the negative effect of publication bias on the results and conclusions of 
systematic reviews and meta-analyses (Sutton, Duval, Tweedie, Abrams, & Jones, 2000). IOU or the index of 
unfairness is one possible approach to deal with publication bias. Under conditions where the causal relationship 
k between the cause At and an effect Bt is analyzed, the study design should assure an IOU as near as possible to 
0. More precisely, a study design of a study grounded on a very low IOU is more appropriate to analyze the data 
for a causal relationship k and to assure that the results and conclusions of systematic reviews and meta-analyses 
drawn are not potentially biased. 
Theorem 4. (The probability of an index of unfairness) 

Claim. 

The probability of an index of unfairness, denoted by p(IOU), is 
ሻܷܱܫሺ  = ሻ (77)ܷܱܫሺ݁ݐݑ݈ݏܾܣ

Proof. 

The index of unfairness was derived as  

ܷܱܫ  = ቆ൫ܣ + ܤ ൯n − 1ቇ (78)

Under conditions of a Bernoulli distribution, it is A = n×p(At), B = n×p(Bt) while 1 = p(At) + p(At) or 1 = p(Bt) + 
p(Bt). The index of unfairness changes under these circumstances to 

ܷܱܫ  =  ቌቀn × ௧ܣ൫ ൯ + n × ௧ܤ൫ ൯ቁn − n × ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ݊ ቍ (79)

Simplifying, it is 
ܷܱܫ  =  ൬൫ܣ௧ ൯ + ௧ܤ൫ ൯ − ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ൰ (80)

The index of unfairness indicates a probability measure. To date, as stated before, probability is a positive number 
between +0 and +1, including both numbers. Therefore, we define the probability of an index of unfairness 
something as 

ሻܷܱܫሺ  = ݁ݐݑ݈ݏܾܣ  ൬൫ܣ௧ ൯ + ௧ܤ൫ ൯ − ቀ൫ܣ௧ ൯ + ௧ܣ൫ ൯ቁ൰ = ሻ (81)ܷܱܫሺ ݁ݐݑ݈ݏܾܣ

Quod erat demonstrandum. 
Remark 4. 
The higher the probability p(IOU), the more unfair a study design and the greater the possibility that the data are 
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probably biased and potentially inappropriate for causal analysis.  
Theorem 3.5 (Study design and the causal relationship k) 
Several experiments with different study design were performed. The following data were obtained and are 
presented by the following 2 by 2-tables (Table 3, Table 4, Table 5). A very fair experiment is illustrated by the 
Table 3. 
 
Table 3. The relationship between a plate and a finger 

  Finger injured  
  Yes = +1 No = +0 Total

Hot Plate Yes =+1 50 0 50 
No = +0 0 50 50 

 Total 50 50 100 
 

An extremely unfair experiment is illustrated by table 4. 
 
Table 4. The relationship between a plate and a finger 

  Finger injured  
  Yes = +1 No = +0 Total

Hot Plate Yes =+1 1 0 1 
No = +0 0 99 99 

 Total 1 99 100 
 

Another extremely unfair experiment is illustrated by table 5. 
 
Table 5. The relationship between a plate and a finger 

  Finger injured  
  Yes = +1 No = +0 Total

Hot Plate Yes =+1 99 0 99 
No = +0 0 1 1 

 Total 99 1 100 
 

Claim. 
A p(IOU)=p(IOI)=0 assures the recognition of causal relationships. 

Proof. 
The data above are tested for significance. The data of the table 3 are analyzed and presented by table 5. The data 
of the table 4 are analyzed and presented by table 6. The data of the table 5 are analyzed and presented by table 7. 
 
Table 5. The statistical analysis of the data of table 3 

  p(IOU) = 0,000 p(IOI) = 0,000 
k = +1  

P value (k | HGD) = 9,9117E-30 Chi Sq.(k) = 100,000 
p (SINE) = 1 Chi Sq. 1(SINE) = 0,000 Chi Sq. 2(SINE) = 0,000 
p (IMP) = 1 Chi Sq. 1(IMP) = 0,000 Chi Sq. 2(IMP) = 0,000 

p (EXCL) = 0,5 Chi Sq. 1(EXCL) = 50,000 Chi Sq. 2(EXCL) = 50,000 
 
The data as provided by table 4 are extremely unfair. 
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Table 6. The statistical analysis of the data of table 4 

 p(IOU) = 0,980 p(IOI) = 0,000 
k = +1   

P value (k | HGD) = 0,01 Chi Sq.(k) = 100,000 
p (SINE) = 1 Chi Sq. 1(SINE) = 0,000 Chi Sq. 2(SINE) = 0,000 
p (IMP) = 1 Chi Sq. 1(IMP) = 0,000 Chi Sq. 2(IMP) = 0,000 

p (EXCL) = 0,99 Chi Sq. 1(EXCL) = 1,000 Chi Sq. 2(EXCL) = 1,000 
 
Due to the study design, the data as provided by table 5 are extremely unfair too. 
 
Table 7. The statistical analysis of the data of table 5 

p(IOU) = 0,980 p(IOI) = 0,000 
k = +1   

P value (k | HGD) = 0,01 Chi Sq.(k) = 100,000 
p (SINE) = 1 Chi Sq. 1(SINE) = 0,000 Chi Sq. 2(SINE) = 0,000 
p (IMP) = 1 Chi Sq. 1(IMP) = 0,000 Chi Sq. 2(IMP) = 0,000 

p (EXCL) = 0,99 Chi Sq. 1(EXCL) = 99,000 Chi Sq. 2(EXCL) = 99,000 
 
The results as presented by Table 5 are self-evident. The causal relationship k= +1, the P value calculated according 
to the hypergeometric distribution is P value = 9,9117E-30, p (IOU) = p (IOI) = 0. The necessary condition is 
given (Chi Sq. 1(SINE) = 0,000; Chi Sq. 2(SINE) = 0,000) and at the same time, the sufficient condition is given 
(Chi Sq. 1(IMP)=0,000; Chi Sq. 2(IMP) = 0,000) too. A perfect study design should assure as much as possible 
an p(IOU) = p(IOI) equal or very near to zero. As we can see, a significant causal relationship alone without an 
evidence of a significant conditio sine qua non relationship or a significant conditio per quam relationship or a 
significant exclusion relationship et cetera is an indicator of biased data and not that much of secured findings. 
However, the motivation of a researcher and other factors can influence the study design with the consequence 
that even contradictory data can be achieved (Table 6). The index of unfairness is extremely unfair with p(IOU) = 
0,98 while p(IOI) = 0. Even under these very extreme conditions, theoretically, it is possible to recognize a causal 
relationship (k=+1, P value = 0,01). The necessary condition is given (Chi Sq. 1(SINE) = 0,000; Chi Sq. 2(SINE) 
= 0,000) and at the same time, the sufficient condition is given (Chi Sq. 1(IMP)=0,000; Chi Sq. 2(IMP) = 0,000) 
too. In particular, the exclusion relationship is significant too (Chi Sq. 1(EXCL) = 1,000; Chi Sq. 2(EXCL) = 
1,000) which is a contradiction. Logically, it is not possible, that At excludes Bt and vice versa and that equally At 
is a necessary condition of Bt. A p(IOU) which is much greater than p(IOI) can imply contradictions. In such cases, 
the use of the causal relationship is of help. A causal relationship which is greater 0 excludes a significant exclusion 
relationship. The reason is that in the case of an exclusion relationship p(at) = p(At∩Bt) = 0 and the causal 
relationship k derived at every single event, at every single Bernoulli trial t, as 

 ݇൫ܣ௧ , ௧ܤ ൯ ≡ ௧ܣ൫ ܤ௧ ൯ − ቀ൫ܣ௧ ൯ × ௧ܤ൫ ൯ቁට൫ܣ௧ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ × ௧ܤ൫ ൯ × ቀ1 − ௧ܤ൫ ൯ቁమ  (82)

where At denotes the cause and Bt denotes the effect and reduces under these circumstances to 

 ݇൫ܣ௧ , ௧ܤ ൯ ≡ 0 − ቀ൫ܣ௧ ൯ × ௧ܤ൫ ൯ቁට൫ܣ௧ ൯ × ቀ1 − ௧ܣ൫ ൯ቁ × ௧ܤ൫ ൯ × ቀ1 − ௧ܤ൫ ൯ቁమ < 0 (83)

A significant exclusion relationship demands a negative causal relationship k. Another way to circumvent 
problems like these is to assure a study design where a = d. 
Quod erat demonstrandum. 
Theorem 3.6 (Biased data and the causal relationship k) 
The experiments of theorem before were performed under ideal conditions. In real life bias of different kind must 
be considered. We analyze the same relationship with data which are biased due to several causes. The following 
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data which are biased were obtained and are presented by the following 2 by 2-tables (Table 8, Table 9, Table 
10). A very fair experiment is illustrated by the Table 8. 
 
Table 8. The relationship between a plate and a finger 

  Finger injured  
  Yes = +1 No = +0 Total

Hot Plate Yes =+1 1 0 1 
No = +0 49 50 99 

 Total 50 50 100 
An extremely unfair experiment is illustrated by table 9 too. 
 
Table 9. The relationship between a plate and a finger 

  Finger injured  
  Yes = +1 No = +0 Total

Hot Plate Yes =+1 49 49 98 
No = +0 1 1 2 

 Total 50 50 100 
Another extremely biased experiment is illustrated by table 10. 
 
Table 10. The relationship between a plate and a finger 

  Finger injured  
  Yes = +1 No = +0 Total

Hot Plate Yes =+1 5 5 10 
No = +0 135 5 140 

 Total 140 10 150 
 

Claim. 
A high p(IOU) and a high p(IOI) need not to exclude the recognition of conditions. A p(IOI) < 0,5 appears to be 
necessary to recognize with an appropriate degree of certainty causal relationships while an p(IOI) < 0,25 is of 
great help in analysing causal data. The higher p(IOI) the less are the data suiteable for causal analysis. 
Proof. 
The data are tested again for significance. The statistical analysis of the data of the table 8 is presented by table 11. 
 
Table 11. The statistical analysis of the data of table 8 

  p(IOU) = 0,490 p(IOI) = 0,490 
k = +0,10050378  

P value (k | HGD) = 0,5 Chi Sq.(k) = 1,010 
p (SINE) = 0,51 Chi Sq. 1(SINE) = 48,020 Chi Sq. 2(SINE) = 24,253
p (IMP) = 1 Chi Sq. 1(IMP) = 0,000 Chi Sq. 2(IMP) = 0,000 

p (EXCL) = 0,99 Chi Sq. 1(EXCL) = 0,020 Chi Sq. 2(EXCL) = 1,000 
 
We are reanalyzing a secured causal relationship between a hot plate and an injured human finger. However, a 
study design provided data which are biased and only of limited value. The study of Table 8 has an p(IOU) = 
p(IOI) = 0,49 but we have not been able to recognize a significant causal relationship (k=+0,101; P value = 0,5) 
even if a causal relationship in the population between a hot plate and an injured human finger is given for sure. 
Thus far, it is not enough that p(IOU) = p(IOI) to be able to consider data for a causal analysis. The study design 
should assure that both, p(IOU) and p(IOI), should be as near as possible to zero. Briefly, that the data are biased 
can be recognized by the fact that both is significant, the conditio per quam (Chi Sq. 1(IMP) =0,000; Chi Sq. 
2(IMP) =0,000) and the exclusion relationship (Chi Sq. 1(EXCL) =0,020; Chi Sq. 2(EXCL) =1,000). This is a 
contradiction; we just cannot decide what is correct. Such data cannot be considered for a statistical analysis or 
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the causal relationship k must decide what is correct or what could be correct. A significant conditio per quam 
relationship demands a positive causal relationship k. In other words, if such data should be used for further 
analysis, we should conclude due to preliminary reasons that there is a significant conditio per quam relationship 
and not a significant exclusion relationship. However, a high p(IOU) and a high p(IOI) indicates potentially biased 
data. In this context, the statistical analysis of the data of the table 9 is presented by table 12. 
 
Table 12. The statistical analysis of the data of table 9 

 p(IOU) = 0,480 p(IOI) = 0,480 
k = 0,000  

P value (k | HGD) = 0,505 Chi Sq.(k) = 0,000 
p (SINE) = 0,990 Chi Sq. 1(SINE) = 0,020 Chi Sq. 2(SINE) = 0,500 
p (IMP) = 0,510 Chi Sq. 1(IMP) = 48,020 Chi Sq. 2(IMP) = 24,500 

p (EXCL) = 0,510 Chi Sq. 1(EXCL) = 48,020 Chi Sq. 2(EXCL) = 24,500 
 
The causal relationship between a hot plate and an injured human finger is secured and clear. Still, if we rely on 
the data of the study above (Table 9) there is no causal relationship between a hot plate and an injured human 
finger (k = +0; P vlaue = 0,505). The conclusion cannot be that we are just not able to recognize causal relationships 
by statistical methods. Among other, the study design technology must be improved to ensure the quality of data. 
A high p(IOU) and a high p(IOI) may exclude the recognition of causal relationships but not the recogniztion of 
conditions too. Even under these very unfair conditions it was possible to recognize that there is a significant 
conditio sine qua non relationship. Extremely biased data are presented by table 10. The statistical analysis of the 
same data is presented by table 13. 
 
Table 13. The statistical analysis of the data of table 10 

  p(IOU) = 0,000 p(IOI) = 0,867 
k = -0,464  

P value (k | HGD) = 0,000 Chi Sq.(k) = 32,334 
p (SINE) = 0,100 Chi Sq. 1(SINE) = 130,179 Chi Sq. 2(SINE) = 130,179
p (IMP) = 0,967 Chi Sq. 1(IMP) = 2,500 Chi Sq. 2(IMP) = 2,500 

p (SINE ^ IMP) = 0,067 Chi Sq. 1(SINE ^IMP) = 132,679 Chi Sq. 1(SINE ^IMP) = 132,679
p (EXCL) = 0,967 Chi Sq. 1(EXCL) = 0,179 Chi Sq. 2(EXCL) = 2,500 

 
Table 10 presents data of a secured relationship between a hot plate and an injured human finger. Due to several 
factors, studies may produce biased data with the consequence that the same are only of a very limmited or of none 
value. This is demonstrated by the statistical analysis (Table 13) of the data of table 10. The data published support 
the position that there is a highly significant negative causal relationship between a hot plate and an injured human 
finger (k = - 0,464; P value = 0,000) while at the same time the exclusion relationship (Chi Sq. 1(EXCL) = 0,179; 
Chi Sq. 2(EXCL) = 2,500) is significant too. We would have to recognize: A hot plate prevents form an injured 
human finger while such a conclusion is not completely illogical. Human subject have a free will and do know 
that a hot plate can damage the finger. Therefore, the most persons refused to put their own finger on a hot plate. 
Only 5/10 had the courage to put their finger on a hot plate. In toto 135/140 had an injured finger but due to another 
cause and not due to a hot plate. The same data provide at the same time evidence of a significant conditio sine 
qua non relationship (p(IMP) = 0,967; Chi Sq. 1(IMP) = 2,500; Chi Sq. 2(IMP) = 2,500) too. These data are self-
contradictory, we just cannot decide for sure what is correct? How can data provide at the same time evidence of 
two each other exluding relationships? The p(IOU) = 0 indicates that the analysis of conditions is possible. 
Contrary to expectation, p(IOI) = 0,867 indicates that the analysis of causal relationships does not make any sense 
because it cannot be excluded that the data are biased too much. Due to the self-contradictory data, we just cannot 
decide what is true and what is not true. Such data should be excluded from analysis until a more precise technology 
is known how to deal with such kind of data.  
A p(IOI) < 0,5 appears to enable the recognition of causal relationships while an p(IOI) < 0,25 is of great help in 
analysing causal data. The higher p(IOI) the less are the data suiteable for causal analysis. 
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Quod erat demonstrandum. 
Theorem 3.7 (Without oxygen no burning candle) 
The relationship between the behavior of a candle produced out of wax and oxygen is studied. The investigator 
lights the candle wick of many candles (old, young, big, small, red, green, curved, straight et cetera) under different 
conditions. Candle flame reacts with oxygen such that heat and light which characterizes a candle are produced. 
The verum group is studied under conditions of the air we breathe, i. e. about 21 percent oxygen. The placebo 
group is studied under conditions where no oxygen present. Fire itself needs at least 16 percent oxygen. Below 
that the fire will go out. In the following, a burning candle is enclosed and hermetically sealed by an appropriate 
cup of transparent glass while at the same time the concentration of oxygen inside this enclosed small space is 
measured. When all oxygen is consumed, it is recorded whether the candle is burning or not (case d). Different 
studies provided different data (Table 14, Table 15, Table 16). 
 
Table 14. Oxygen and a bruning candle 

  Burning candle  
  Yes = +1 No = +0 Total

Oxygen Yes =+1 25 50 75 
No = +0 0 25 25 

 Total 25 75 100 
 

The data of Table 14 are analyzed by table 17. 

 
Table 15. Oxygen and a bruning candle 

  Burning candle  
  Yes = +1 No = +0 Total

Oxygen Yes =+1 90 5 95 
No = +0 0 5 5 

 Total 90 10 100 
 

The data of Table 15 are analyzed by table 18. 

 
Table 16. Oxygen and a bruning candle 

  Burning candle  
  Yes = +1 No = +0 Total

Oxygen Yes =+1 25 50 75 
No = +0 0 25 25 

 Total 25 75 100 
 

The data of Table 16 are analyzed by table 19. 

 
Claim. 
The decision whether data are biased with respect to statistical analysis of conditions is supported by the index of 
unfairness. 

Proof. 
Different aspects of the relationship between oxygen and a burning candle are pictured by several studies. The 
data of Table 14 are analyzed by table 17. 
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Table 17. The statistical analysis of the data of table 14. 
  p(IOU) = 0,000 p(IOI) = 0,500 

k = 0,333  
P value (k | HGD) = 0,000 Chi Sq.(k) = 11,111 

p (SINE) = 1,000 Chi Sq. 1(SINE) = 0,000 Chi Sq. 2(SINE) = 0,000 
p (IMP) = 0,500 Chi Sq. 1(IMP) = 33,333 Chi Sq. 2(IMP) = 33,333

p (SINE ^ IMP) = 0,500 Chi Sq. 1(SINE ^IMP) = 33,333 Chi Sq. 1(SINE ^IMP) = 33,333
p (EXCL) = 0,750 Chi Sq. 1(EXCL) = 25,000 Chi Sq. 2(EXCL) = 8,333 

 
In our everyday life, the relationship between oxygen and a burning candle is clear: without oxygen no burning 
candle. In particular, oxygen itself is by far not the cause of a burning candle. However, the data of the study 
analyzed are to some extent self-contradictory. The study design is based on the assumption that (a = 25) = (d=25) 
and yielded an p(IOU) = 0. As a consequence, it was possible to analyze the data for conditions (i. e. risk factors). 
We were able to recognize: without oxygen no burning candle (p(SINE) = 1,000; Chi Sq. 1(SINE) =0,000; Chi Sq. 
2(SINE) =0,000). However, the same study supports the hypothesis of a highly significant cause effect relationship 
between oxygen and a burning candle (k =+0,333; P value (k|HGD) = 0,000). Such a conclusion appears not to be 
justified. With respect to causal analysis it cannot be excluded that study is biased (p(IOI)=0,5). Furthermore, 
neither the study analyzed nor another study has been able to provide reproduceable evidence of conditio per quam 
relationship (p(IMP) = 0,500; Chi Sq. 1(IMP) = 33,333; Chi Sq. 2(IMP) = 33,333) between oxygen and a burning 
candle (i.e. if oxygen then burning candle). A higher p(IOI) appears not to justify the exclusion of data with respect 
to the analysis of conditions (i.e. risk factors). More fundamentally, it is important to take care about the index of 
independence (IOI) when data are considered for causal analysis. Even if the data support the hypothesis of a 
highly significant causal relationship, it is important to stress here that these data should not be used for that 
purposes. As next, the data of another study (Table 15) are analyzed by table 18. 

 
Table 18. The statistical analysis of the data of table 15. 

  p(IOU) = 0,850 p(IOI) = 0,050 
k = +0,688  

P value (k | HGD) = 0,000 Chi Sq.(k) = 11,111
p (SINE) = 1,000 Chi Sq. 1(SINE) = 0,000 Chi Sq. 2(SINE) = 0,000 

p (IMP) = 0,950 Chi Sq. 1(IMP) = 2,500 Chi Sq. 2(IMP) = 0,263 
p (SINE ^ IMP) = 0,950 Chi Sq. 1(SINE ^IMP) = 2,500 Chi Sq. 1(SINE ^IMP) = 0,263 

p (EXCL) = 0,100 Chi Sq. 1(EXCL) = 90,000 Chi Sq. 2(EXCL) = 85,263
 
To be sure, we can state that the data (Table 15) support the hypotheses: without oxygen no burning candle (p(SINE) 
= 1,000; Chi Sq. 1(SINE) = 0,000; Chi Sq. 2(SINE) = 0,000) even if p(IOU) = 0,85. However, the problem with 
these data is that a significant causal relationship (k =+0,688; P value (k | HGD) = 0,000) is supported too, that a 
significant conditio per quam relationship (p(IMP) = 0,950; Chi Sq. 1(IMP) = 2,500; Chi Sq. 2(IMP) = 0,263) is 
supported too and that a significant necessary and sufficient condition (p(SINE ^ IMP) = 0,950; Chi Sq. 1(SINE 
^IMP) =2,500; Chi Sq. 1(SINE ^IMP) = 0,263) is supported too. In this case, the problem can be solved quickly. 
Oxygen is not the cause of a burning candle, even if p(IOI) is very low (p(IOI)=0,05). However, in most cases an 
investigator is faced with an unknown situation and needs reliable methods which are of help to decide whether 
the data analyzed are worth being analyzed or not. In toto, it is not enough to rely only on statistical measures. The 
quality of data fundamentally determined by study design and other factors must be considered too. The statistical 
analysis (Table 18) of the data of table 15 is of only limited value. We just cannot decide what is true and what is 
not true. A high p(IOU) can be associated with bias and the data should be analyzed only with very great care or 
not at all even if p(IOI) is small. 
Quod erat demonstrandum. 
4. Discussion 
Kicinski et al. (Kicinski et al., 2015) and other (Lin, 2018; Lin & Chu, 2018) investigated publication bias in meta-
analyses and were able to find evidence of publication bias in systematic reviews. The application of appropriate 
statistical methods in biomedical research alone on data collected from clinical trials and other studies is not 
enough and does not guarantee conclusions which are valid and reproduceable. The use of funnel plot's (Light & 
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Pillemer, 1984) is one way to detect publication bias in an examination. Other formal tests for publication bias 
were developed by Begg and Mazumdar (Begg & Mazumdar, 1994) and by Egger et al . (Egger, Smith, Schneider, 
& Minder, 1997). Higgins et al. (Higgins & Thompson, 2002) developed a statistical tool to measure the extent of 
heterogeneity in a meta-analysis. In a slightly different way, the development and the use of other effective 
measures to reduce publication bias in clinical trials and other studies is necessary and justified. The analysis of 
data for causal relationships is not without problems but not impossible. However, bias in this context may 
invalidate the conclusions drawn. Again, there are justified reasons to doubt whether data as such and 
undifferentiated are suitable for a systematic review and meta-analyses. According to this account, one has to 
examine and to consider the different kinds of bias and as a rule of thumb, for causal analysis, a study design 
should assure as much as possible that at least 

ሻܷܱܫሺ  + ሻܷܱܫሺ < 0,5 (84)

The following table (Table 19) may provide a useful overview on this relationship. 

 
Table 19. The relationship between p(IOU) and p(IOI). Soft rule. 

  p(IOI)  
  < 0,5 > 0,5 Total

p(IOU) < 0,5 Causal analysis may be possible. Analysis of conditions.  
> 0,5 Analysis of conditions, with great care! No analysis. Data are potentially biased.  

 Total   1 
 
In its various forms and shapes, the concept of causality plays a fundamental role in the history of human science. 
However, and perhaps for this reason especially the relationship between causality and statistics (Dempster, 1990; 
Korch, 1965) is governed by too many prevailing prejudices. Such prejudices are stemming from different sources 
one of which is study design. In particular to avoid confusion and in order to prevent an unjustified backward and 
discredited view on the new statistical methods available to analyze causal relationships from data, studies which 
are aimed to analyze data for causal relationships should assure as much as possible 

ሻܷܱܫሺ  + ሻܷܱܫሺ < 0,25 (85)

until better methods are known and available to deal with bias due to study design. The table 20 may provide a 
useful overview. 
 
Table 20. The relationship between p(IOU) and p(IOI) and causal analysis. Hard rule. 

  p(IOI)  
  < 0,25 > 0,25 Total

p(IOU) 

< 
0,25 Causal analysis. Causal analysis not really appropriate.  

> 
0,25 

Causal analysis possible, with great 
care! 

No causal analysis. Data could be potentially 
biased.  

 Total   1 
 
A very low p(IOI) is not necessary to recognize conditions. However, a very high p(IOI) can indicate extremely 
biased data and the conclusions drawn could be potentially invalid. Even if p(IOU) is very low, data with a p(IOI) 
beyond 0,75 are of very limited value even for the for the analysis of conditions. 
5. Conclusion 
Historically, much effort has been put into the rapid development of inferential methods such as estimation and 
hypothesis testing et cetera while study design aspects have not been formally considered to a necessary extent. 
However, the best inferential methods will face their natural limits when confronted with biased data. The study 
design has a crucial impact on the quality of data in clinical studies and trials. The new non inferential methods, 
the index of unfairness (IOU) and the index of independence (IOI), are of use to reduce bias due to data gained by 
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an inappropriate study design. Even ex post, the robustness of these non-inferential methods will convince the 
researcher. 
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