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Abstract 

Background: Peri-implantitis (PI) and osteoporosis (OP) are prevalent chronic conditions with substantial health 

impacts, yet the genetic and molecular links between these diseases are not fully understood. Clarifying the shared 

genetic similarities between PI and OP is crucial for enhancing diagnostic and therapeutic strategies. 

Objective: The study aims to elucidate the shared genetic and molecular pathways between PI and OP through an 

integrated computational biology analysis, contributing to the development of more effective diagnostic and 

therapeutic approaches. 

Methods: The research utilized PI-related datasets GSE33774 and GSE106090 from the GEO database and genes 

associated with PI and OP from DisGeNET. Differential expression analysis was conducted using the "limma" 

package in R. Protein-Protein Interaction (PPI) networks were constructed with Cytoscape, identifying cross-talk 

genes between PI and OP. The LASSO model was applied for marker gene selection and GO Biological Process 

and KEGG pathway analyses were conducted. Analyses of drug susceptibility and immune infiltration were also 

included to understand potential therapeutic implications and the role of the immune environment. 

Results: The analysis identified key differentially expressed genes (DEGs) in PI and significant cross-talk genes 

between PI and OP. The PPI network highlighted central genes like HIF1A, TNF, TGM2, and SPP1. Marker genes 

(i.e., PIK3CG, SFRP4, CCR5, and PRLR) pinpointed through LASSO and logistic regression showed significant 

correlations with the cross-talk genes. Insights into drug susceptibility and the immune infiltration landscape in 

both conditions were provided. Single cell analysis further delineated the expression patterns of these marker genes 

in relevant cell types. 

Conclusion: This study uncovers novel insights into the shared genetic landscape of peri-implantitis (PI) and 

osteoporosis (OP) by identifying four key marker genes—PIK3CG, SFRP4, CCR5, and PRLR—and their roles in 

the pathogenesis of these conditions. The integrated computational biology approach employed in this research 

contributes to the current body of literature by offering a deeper understanding of the genetic and molecular 

mechanisms underlying the interplay between PI and OP.  

Keywords: peri-implantitis, osteoporosis, computational biology, Protein-Protein Interactions, Biomarker 

Discovery 

1. Introduction 

Periimplantitis (PI) and osteoporosis (OP) are increasingly recognized as interconnected conditions within the 

scope of bone health and disease. An increasing number of literature (1–6) has started to illuminate the potential 

relationships and underlying mechanisms linking these two diseases. Periimplantitis, characterized by 

inflammatory processes around dental implants (7,8), shares pathophysiological pathways with osteoporosis, a 

systemic condition marked by reduced bone density and increased fracture risk (4). The inflammatory cytokines, 

bone metabolism dysregulation, and immune responses are speculated to be common factors in both conditions 

(9–11). For instance, inflammatory mediators like TNF-α and IL-1β, elevated in PI (12), are also implicated in 

osteoporosis-related bone resorption processes (13). The predispositions affecting bone density and turnover might 

influence susceptibility to both PI and OP, hinting at a genetic connection. Additionally, the role of microbiota in 
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PI has been explored in relation to systemic bone loss, further linking these conditions (14,15). The impact of 

lifestyle factors, such as smoking and diet, on both diseases has also been investigated, suggesting a complex 

interplay of genetic, environmental, and lifestyle factors in their pathogenesis (16,17). 

Although there appears to be an increasing body of clinical evidence, it remains unclear, how PI and OP are 

genetically and molecularly connected. Most studies have only looked at correlations between these conditions. 

Focused on specific aspects of their underlying mechanisms giving us a fragmented understanding of the overall 

genetic landscape. This research aims to bridge that gap by using computational biology analysis to uncover the 

shared pathways and molecular mechanisms between periimplantitis and osteoporosis. What sets this study apart 

is its faceted approach, combining gene expression data, protein-protein interaction networks, and advanced 

statistical models. By taking this approach, the aim of the current research is to gain a holistic understanding of 

how these diseases interact with each other, potentially revealing new biomarkers and targets for therapy. This 

methodology aligns with the growing trend of using tools in biomedical research and responds to calls for more 

integrated approaches in tackling complex diseases. Moreover, the use of bioinformatics tools and algorithms in 

this study represents a significant advancement, in unraveling the intricate genetic networks underlying these 

conditions. 

Recent advancements in bioinformatics have opened new avenues for understanding the complex relationships 

between seemingly distinct diseases. By leveraging high-throughput data and computational tools, researchers can 

uncover shared molecular pathways, genetic risk factors, and potential therapeutic targets. This approach has been 

successfully applied to various disease pairs, revealing unexpected connections and informing novel treatment 

strategies. For instance, a recent study by Li et al. (2021) employed bioinformatics techniques to investigate the 

similarity and potential relationship between peri-implantitis and rheumatoid arthritis at the transcriptomic level 

(18). The study identified common differentially expressed genes and signaling pathways, suggesting a shared 

inflammatory etiology and potential therapeutic targets. Similarly, bioinformatics approaches have shed light on 

the molecular links between periodontitis and systemic diseases such as psoriasis (19), venous thromboembolism 

(20), Parkinson's disease (21), and type 2 diabetes (22). These studies demonstrate the power of bioinformatics in 

unraveling the complex interplay between oral and systemic health, paving the way for personalized medicine and 

targeted interventions. In the context of peri-implantitis and osteoporosis, applying bioinformatics techniques 

could provide invaluable insights into their shared genetic underpinnings, inflammatory pathways, and potential 

therapeutic strategies, ultimately improving patient care and outcomes. 

The primary objective of this study is to examine the relationship between PI and OP at a genetic and molecular 

level. By employing computational biology techniques, it was aimed to analyze gene expression data from the 

GEO database and gene associations from DisGeNET. Through this research genetic pathways and biomarkers 

should be identified, which are shared between these two conditions. The analysis involved constructing Protein 

Protein Interaction (PPI) networks using Cytoscape and utilizing LASSO logistic regression models. These 

methodologies will play a role in uncovering potential targets for therapeutic intervention as well as enhancing the 

understanding of how PI and OP develop together. This study represents a step forward, in this field of research. 

Thereby, it was hypothesized that by applying advanced bioinformatics techniques to analyze gene expression 

data, we will uncover shared genetic pathways, potential biomarkers, and therapeutic targets that underlie the 

complex interplay between peri-implantitis and osteoporosis. Furthermore, we postulate that the identification of 

these common molecular mechanisms will provide a foundation for the development of novel diagnostic tools and 

targeted treatment strategies, ultimately leading to improved patient care and outcomes in the management of these 

debilitating conditions. 

2. Material and Methods 

2.1 Data Downloading 

Peri-implantitis (PI)-related datasets (GSE33774 and GSE106090) were downloaded from the GEO database 

(http://www.ncbi.nlm.nih.gov/). For both datasets, PI-related and control samples were selected for inclusion in 

the subsequent analysis. Sample information statistics for GSE33774 and GSE106090 are shown in Table 1. 

Additionally, osteoporosis (OP)-related gene sets and PI-related genes were obtained from the DisGeNET database 

(http://www.disgenet.org). In total, 1,098 OP-related gene sets and 63 PI-related gene sets were acquired for further 

analysis. 
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Table 1. The statistical information of GSE33774 and GSE106090 datasets 

  GSE33774 GSE106090 

Experiment type Array 

Platforms GPL6244 GPL21827 

Case 7 6 

Control 8 6 

 

2.2 Data Processing 

For the PI datasets (GSE33774, GSE106090), the Probe IDs were first converted to Gene Symbols. The human 

gene annotation dataset was obtained from GENCODE (https://www.gencodegenes.org/human/), and the mapping 

relationship between Probe ID and Gene Symbol was obtained based on the Probe ID information and the human 

gene annotation dataset provided by the platform. The IDs in GSE33774 and GSE106090 were replaced with Gene 

Symbols, and Gene Symbols with possible duplicates were de-weighted using gene expression averages. Any 

Gene Symbol was removed when the number of samples with an expression value of 0 exceeded 50% of the total 

number of samples. Finally, log2 scaling was performed on GSE33774, which had a large difference in sample 

expression values. 

For the PI datasets (GSE33774 and GSE106090), the first step involved converting the Probe IDs to Gene Symbols. 

To accomplish this, the human gene annotation dataset was obtained from GENCODE 

(https://www.gencodegenes.org/human/). The mapping relationship between Probe IDs and Gene Symbols was 

then established based on the Probe ID information and the human gene annotation dataset provided by the 

platform. Subsequently, the IDs in GSE33774 and GSE106090 were replaced with their corresponding Gene 

Symbols. In cases where Gene Symbols had potential duplicates, gene expression averages were used to de-weight 

them. Furthermore, any Gene Symbol was removed if the number of samples with an expression value of 0 

exceeded 50% of the total number of samples. Lastly, log2 scaling was performed on GSE33774 to address the 

large differences in sample expression values. 

2.3 PI Dataset Variance Analysis 

For the PI datasets (GSE33774 and GSE106090), the "limma" package in R (version 4.1.3) (23) was employed to 

analyze the differences between the Case and Control samples. By comparing the gene expression values across 

different groups, it is possible to identify genes with significant differences, which are labeled as differentially 

expressed genes (DEGs). The determination of significant differences in gene expression relies on two reference 

factors: the P-value and the log fold change (FC) value. In this study, genes with a P-value < 0.05 and an absolute 

log FC value > 1 were considered as DEGs. 

2.4 PI and OP Cross-Talk Gene  

GSE33774 and GSE106090 co-differentially expressed genes were obtained, which are considered to be genes 

with consistent and stably varying expression trends in PI. The co-differentially expressed genes were merged with 

the PI-related genes downloaded from the DisGeNET database, resulting in a set of PI potentially related genes. 

Finally, the common genes between the PI potentially relevant gene set and the OP relevant gene set were extracted, 

which are considered as the cross-talk genes of PI and OP. The expression of these cross-talk genes in PI was 

extracted and visualized in a heatmap using the pheatmap package of the R language (24). Subsequently, the 

clusterProfiler package in R was employed to analyze the GO biological processes and KEGG pathways, to obtain 

the biological functions affected by the cross-talk genes. 

2.5 Protein Interaction (PPI) Network Analysis of Cross-talk Gene 

Protein-protein interaction (PPI) pairs between cross-talk genes and other genes were obtained from the HPRD 

database (http://www.hprd.org/) and the BIOGRID database (http://thebiogrid.org/). The PPI data obtained from 

these two databases were combined, resulting in the final cross-talk gene-related PPIs. The cross-talk gene-related 

PPI network was constructed using Cytoscape (version 3.9), and NetworkAnalyzer (https://med.bioinf.mpi-

inf.mpg.de/netanalyzer/help/2.7/index.html#complex) was employed to analyze the topological properties of the 

PPI network. 

2.6 Screening of Marker Genes for PI and OP 

To further screen the bridge genes that play more important roles in PI and OP, the cross-talk genes were subjected 

to additional filtering. Initially, the two PI datasets (GSE33774 and GSE106090) were merged based on their 

common genes to obtain the merged gene expression profiles. Subsequently, the expression values of cross-talk 
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genes were extracted from the merged profiles, and the features of these genes were filtered using the LASSO 

(Least absolute shrinkage and selection operator) model. The LASSO model can be constructed to obtain a more 

refined model by incorporating a penalty function, which changes the regression coefficients of unimportant 

features to 0, thereby facilitating the selection of hub genes. The analysis results provide two optional parameters: 

lambda.min, which is the value of lambda that gives the minimum cross-validation mean (cvm), and lambda.1se, 

which is the largest value of lambda such that the error is within 1 standard error of the minimum. In this study, 

the result of lambda.min was chosen to filter the cross-talk genes. Finally, univariate logistic regression was 

employed to further screen the results of the LASSO analysis, and genes with a P-value < 0.05 in the univariate 

logistic regression results were defined as marker genes for PI and OP. 

2.7 Building a Multivariate Logistic Prediction Model 

The expression values of marker genes were extracted from the combined PI expression profile, and the samples 

were randomly divided into training and test sets at a ratio of 6:4, with 60% of the samples used for training and 

the remaining 40% for testing. A multivariate logistic regression model was constructed based on the rms package 

(25) to analyze the marker gene expression matrix of the training set. The model-derived Linear Predictor Score 

of the training set was then subjected to an inverse logit transformation using the rms package to obtain the Risk 

Score for each sample. Finally, a nomogram was constructed using the rms package to illustrate the relationship 

between the marker genes and the Risk Score. 

The R language nomogramFormula package (26) was used to obtain all the sample Total Points from the 

nomogram table. These Total Points were then incorporated into the Decision Curve Analysis (DCA) as the model 

measure. Additionally, the top two marker genes that had a greater impact on the Risk Score were identified from 

the nomogram table. The expression values of these top two marker genes were used as the gene measure and 

incorporated into the DCA to provide a better reference for clinical decision-making. 

To validate the predictive performance of the logistic prediction model, the calibration curve was first calculated 

using the calibrate method in the rms package. Subsequently, all the samples of marker genes in the PI expression 

matrix, including both the training and test sets, were incorporated into the model for prediction. ROC analysis 

was then performed based on the sample type and the sample Risk Score to evaluate the model's predictive 

accuracy. 

2.8 Marker Gene Correlation and Expression Level Analysis 

To investigate the relationship between marker genes and cross-talk genes, the expression values of marker genes 

and cross-talk genes were first extracted from the PI disease samples. The relationship between the expression 

levels of marker genes and cross-talk genes was then analyzed using Pearson correlation coefficients. 

Simultaneously, the Risk Scores of the PI disease samples were extracted, and Pearson correlation coefficients 

were used to predict the relationship between marker genes and Risk Scores. 

Box-and-line plots were employed to illustrate the expression levels of marker genes in both Case and Control 

samples of PI. Additionally, the Wilcoxon test was used to analyze the significant relationship of marker genes 

between the two groups of samples. Finally, ROC analysis was performed on marker gene expression values based 

on Case-Control sample types to evaluate their diagnostic potential. 

2.9 Constructing Marker Gene-Related PPI-Pathway Network 

PPI relationship pairs of marker genes were extracted from the cross-talk gene-related PPI network and labeled as 

marker gene-Target 1 relationship pairs. All the pathways and their associated genes were then obtained from the 

KEGG database (https://www.kegg.jp/). The pathways related to the marker genes were extracted, resulting in the 

selected marker gene-pathway relationship pairs. Subsequently, all the genes under the pathways in the marker 

gene-pathway relationship pairs were extracted to obtain the pathway-Target2 relationship pairs. The marker gene-

pathway relationship pairs and the pathway-Target2 relationship pairs were constructed using pathways as the 

connecting medium. Genes in Target1 were then screened from the Target2 gene set to form the Target1-marker 

gene-pathway-Target1 closed-loop structure. Finally, Cytoscape was employed to construct the Target1-marker 

gene-pathway-Target1 closed-loop structure network. 

2.10 Drug Susceptibility Analysis of Marker Gene 

To predict sensitive drugs for the treatment of peri-implantitis and osteoporosis, drug sensitivity data and RNA-

seq data for compounds were downloaded from the Cell Miner database 

(https://discover.nci.nih.gov/cellminer/home.do). Drugs that had undergone clinical trials (Clinical trial) and 

received FDA approval (FDA approved) were selected for further analysis. The expression values of marker genes 

were extracted, and Pearson correlation coefficients were calculated to determine the correlation between the 
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expression of each marker gene and different drugs. This analysis was then used to evaluate the drug sensitivity 

of the marker genes. 

2.11 Immune Infiltration Analysis 

To analyze the potential immune cells associated with PI and OP, CIBERSORT analysis was employed. 

CIBERSORTx (https://cibersortx.stanford.edu/) analyzes gene expression profiles based on a known reference 

dataset, the official gene expression signature set for 22 immune cell subtypes: LM22. Since no expression profiles 

were available for OP, the expression profile dataset of PI was used for immune infiltration analysis. Potentially 

relevant immune cells for OP were predicted by immune cells highly expressed with PI. CIBERSORT analysis 

was performed based on the PI expression matrix and LM22 dataset to obtain a matrix of cell abundance scores 

for 22 immune cell subtypes in each sample, as well as the significance and correlation between each sample and 

the corresponding sample of the expression profile. Samples with P-value < 0.05 were chosen as the samples that 

were significantly correlated with the immune cell signature set and PI. Finally, the Wilcoxon test was used to 

analyze the variability of immune cells across sample types. 

The significantly different immune cell abundance scoring matrices from the Wilcoxon test were extracted, and 

Pearson correlation coefficients were used to predict the correlation between significantly different immune cells 

and other immune cells. Additionally, samples from the marker gene expression matrix that were common to the 

immune cell scoring matrix were extracted, and Pearson correlation coefficients were used to predict the 

relationship between significantly different immune cells and the marker genes. 

2.12 Expression Analysis of Marker Genes in Single Cells of Bone and PBMC and Pathway Mapping 

To further analyze the expression of marker genes in cell lines, the results of single-cell analysis of marker genes 

in bone and PBMC were downloaded from the HPA database (https://www.proteinatlas.org/). Additionally, the 

functional relationships of marker genes in important pathways were analyzed. Important pathways and their 

associated genes were downloaded from the KEGG database, and the marker genes were mapped to the KEGG 

pathways using the R language pathview package (27). 

 

Figure 1. The identification of differentially expressed genes and crosstalk genes 

(A) GSE33774 differentially expressed analysis volcano map; (B) GSE106090 differentially expressed gene 

volcano map; (C) Statistics of differentially expressed genes of PI; (D) Statistics of the number of cross-talk genes; 

(E) Cross-talk gene heatmap; (F-G) GO biological process (F) and KEGG pathway enrichment analysis (G) of 
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cross-talk genes; (H) Cross-talk gene related PPI network. The other nodes with lower Degree in the network were 

hided; only the nodes with higher Degree and the 43 Cross-talk genes were remained and displayed; andred edge 

markers were used for the nodes with interactions between Cross-talk genes. 

 

3. Results 

3.1 PI and OP Cross-Talk Gene Screening 

By analyzing the PI dataset, genes with P-value < 0.05 and |logFC| > 1 were selected as DEGs, where logFC > 1 

represents up-regulated genes and logFC < -1 represents down-regulated genes. The number of differentially 

expressed genes was obtained (see Table 2). Volcano plots were used to visualize the distribution of DEGs in the 

two datasets (GSE33774 (Fig 1A) and GSE106090 (Fig 1B)), with the top 8 up-regulated and down-regulated 

genes labeled according to their P-values. 

 

Table 2. Relevant statistics for differential expression analysis of PIs 

 GSE33774 GSE106090 

Limma analysis results 

P value P < 0.05 

|Log2(FC)| |Log2(FC)| > 1 

Up number 158 3149 

Down number 66 3210 

Total 224 6359 

 

Differential analysis of PI yielded 224 DEGs from GSE33774 and 6,359 DEGs from GSE106090. A total of 142 

genes with consistent expression trends were finally obtained, including 105 up-regulated genes and 37 down-

regulated genes (Fig 1C). The DisGeNET database provided 63 PI-related genes, and a total of 196 genes were 

obtained by taking the concatenated set of 142 PI differentially expressed genes and 63 known PI genes, which 

were considered potential disease genes for PI. The DisGeNET database also provided 1,098 OP-related genes. 

The intersection of the 196 PI-related genes and 1,098 OP-related genes was taken, and the intersecting genes were 

considered potential cross-talk genes for PI and OP. Finally, 46 cross-talk genes were obtained, among which 7 

genes (CD38, CXCL8, IL1B, IL6, MMP9, SPP1, TLR4) were present in all three datasets simultaneously (Fig 

1D). The expression of the 46 cross-talk genes in GSE33774 and GSE106090 was extracted (Fig 1E). 

The clusterProfiler package in R was used to perform GO Biological Process (Fig 1F) and KEGG pathway (Fig 

1G) analyses on these 46 cross-talk genes, with functions having a P.adjust < 0.05 considered significant. The top 

20 significant functions were displayed. According to the enrichment results, cross-talk genes are mainly involved 

in leukocyte migration, cytokine-mediated signaling pathways, response to interleukin-1, ossification, and positive 

regulation of MAP kinase activity, among other biological processes (Fig 1F). Additionally, these genes regulate 

the IL-17 signaling pathway, TNF signaling pathway, and osteoclast differentiation (Fig 1G). 

By combining data from the HPRD and BIOGRID databases, protein interaction relationship pairs of cross-talk 

genes were obtained, and a PPI network for these relationship pairs was constructed using Cytoscape software (Fig 

1H). This process yielded 1,327 cross-talk gene-related PPIs, involving a total of 1,073 genes, including 43 cross-

talk genes. The topological properties of the PPI network were analyzed and arranged in descending order based 

on degree. The top 25 genes were selected for display (Table 3), revealing that HIF1A, TNF, TGM2, and SPP1 

were among the most regulated genes in the network. 

3.2 Obtainment and Multivariate Logistic Analysis of Marker Genes 

LASSO was used to screen 46 cross-talk genes (Fig 2A-B), resulting in the identification of eight cross-talk genes 

(PIK3CG, PLIN2, SFRP4, TLR4, CCR5, IL1RN, WNT5A, PRLR) based on the lambda.min parameter. Univariate 

logistic regression was then performed on these eight cross-talk genes, and genes with a P-value < 0.05 in the 

univariate logistic regression results were selected as marker genes (Fig 2C). After screening, four marker genes 

(PIK3CG, SFRP4, CCR5, PRLR) were finally obtained. Among them, the aberrant expression of PIK3CG, SFRP4, 

and CCR5 (OR > 1) may promote disease progression, while the aberrant expression of PRLR may slow down the 

disease progression. 
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Figure 2. Marker gene screening 

(A) Results of LASSO analysis, each line in the figure represents a gene, when the gene tends to 0 the larger value 

of the horizontal coordinate (Log Lambda) indicates the more critical gene. (B) Results of model cross-validation. 

There are two dotted lines in the figure, one is the λ value lambda.min when the mean square error is the smallest, 

and the other is the λ value lambda.1se when the distance from the mean square error is the smallest by one standard 

error, these two values can be chosen either way, and the numbers corresponding to the dotted lines are the results 

of the number of screened genes, and here we choose the lambda.min as the screening condition of the marker 

gene. (C) Logistic regression results. Since OR greater than 1 is a risk factor and vice versa is a protective factor. 

We scaled log10 for both OR and 95% confidence interval in the figure, and log10(1) = 0, so the dotted line in the 

middle is on 0. (D) Total Points are obtained by calculating the Points values of the sample elements, and the 

corresponding risk value of the sample is under the Total Points. For example, if the PIK3CG expression value of 

four genes in a sample is 6, then the corresponding Points score is about 20, and the other three are similarly 

calculated, and the sum of the four Points scores is the Total Points. (E) The horizontal line None indicates the 

case when all the people don't receive the treatment, and the benefit is zero regardless of the High Risk Threshold. 

The dotted line All represents the change in net benefit with the change in High Risk Threshold when everyone 

receives treatment. These two lines represent 2 extreme cases. For a given probability threshold, the larger the net 

benefit, the better, so the curve is generally as far away from the two particular lines as possible. (F) Calibration 

curve of the model. (G) ROC Analysis. 
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Table 3. Topological property analysis of top 20 Cross-talk gene. AverageShortestPathLength (ASPL), 

Betweenness centrality (BC), Closeness centrality (CC), Topological coefficients (TC). 

Symbol Degree ASPL BC CC TC 

HIF1A 156 2.802337 0.283285 0.356845 0.019477 

TNF 103 2.956183 0.191842 0.338274 0.01607 

TGM2 100 2.964946 0.177729 0.337274 0.022308 

SPP1 90 3.081792 0.149647 0.324487 0.013808 

PARK7 76 3.198637 0.11916 0.312633 0.035088 

TGFB1 72 3.222006 0.115771 0.310366 0.020556 

TERT 70 3.226874 0.107644 0.309897 0.04 

CD44 68 2.839338 0.16307 0.352195 0.018953 

CCR5 44 3.51704 0.067005 0.28433 0.033117 

TLR4 42 3.364167 0.072127 0.29725 0.059524 

CXCR4 40 3.463486 0.062313 0.288726 0.038182 

MMP2 38 3.137293 0.057518 0.318746 0.036662 

TNFSF11 38 3.32814 0.061883 0.300468 0.036636 

FGF2 35 3.24148 0.051027 0.308501 0.032911 

PIK3CG 33 3.989289 0.067943 0.250671 0.030303 

MMP9 32 3.293087 0.046237 0.303666 0.037931 

VEGFA 31 3.370983 0.043082 0.296649 0.057604 

MMP3 26 3.425511 0.040621 0.291927 0.045897 

CCL2 22 3.395326 0.037469 0.294523 0.054324 

PRLR 21 3.650438 0.02489 0.27394 0.089947 

IL1B 21 3.424537 0.028732 0.29201 0.060952 

MMP1 18 3.529698 0.020026 0.28331 0.066138 

SFRP4 18 1 1 1 0 

POU2AF1 17 4.375852 0.027723 0.228527 0.058824 

POF1B 14 4.199611 0.020291 0.238117 0.119048 

 

The expression values of the four marker genes were extracted, and the samples in the expression matrix were 

randomly divided into a training set (60% of the samples) and a test set (40% of the samples). A multivariate 

logistic regression model was constructed to analyze the marker gene expression matrix of the training set. Using 

the plogis method from the R language stats package, the inverse logit of the model's Linear Predictor Score was 

calculated to obtain the Risk Score. A nomogram table was used to show the relationship between the marker 

genes and the Risk Score (Fig 2D). The results revealed that SFRP4 and PRLR have a large impact on Total Points 

(Fig 2D). The training set sample Total Points from the nomogram table, as well as the top two marker genes 

(SFRP4 and PRLR) that had a greater impact on Risk Score, were obtained for inclusion in the DCA analysis. 

Clinical decision curves showed that as the High-Risk Threshold increased, the Net Benefit for Total Points was 

superior to SFRP4 and PRLR, with higher overall net benefit observed over a wide range of thresholds (Fig 2E). 

To verify the multivariate logistic model's prediction effect, the calibration curve of the model was first calculated. 

The calibration curve was found to be close to the Actual Proportion in the model's Predicted Probability, 

indicating that the calibration curve does not deviate significantly from the corresponding reference line (Fig 2F). 

The model was then used to predict all the samples, and ROC analysis was performed on the prediction result Risk 

Score to assess the model's prediction effect (Fig 2G). As a result, the AUC value of the model was obtained to be 

0.99, indicating that the logistic model established by the four marker genes has a good prediction effect on PI and 

that there is a significant difference between the expression values of the Case and Control samples for the four 

marker genes. 

3.3 Marker Gene Correlation Analysis 

Pearson's correlation coefficient was used to calculate the correlations between the 4 marker genes and the 46 

cross-talk genes (including the four marker genes) (Fig 3A). Relationship pairs with |cor| > 0.7 were extracted, and 

the results showed that CCR5 was significantly positively correlated with POF1B (cor = 0.7622); PIK3CG was 

significantly positively correlated with POU2AF1, CXCL8, etc. (cor > 0.7) and significantly negatively correlated 

with IL34 and IL1RN (cor < -0.85); SFRP4 was highly positively correlated with MMP2 (cor = 0.7913) and 

significantly negatively correlated with POF1B (cor = -0.7107) (Table 4). Correlation analysis between marker 

genes and sample risk scores revealed that PIK3CG, SFRP4, and CCR5 were positively correlated with sample 
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risk scores, while PRLR was negatively correlated with sample risk scores (Fig 3B-E). Gene expression analysis 

showed that the expression levels of PIK3CG, SFRP4, and CCR5 in the Case samples were significantly higher 

than those in the Control samples, while the expression level of PRLR in the Case samples was significantly lower 

than that in the Control samples (Fig 3F-G). The AUC values of the 4 marker genes were greater than 80%, 

indicating that these four genes had a relatively good prediction effect (Fig 3H). 

 

Table 4. Significantly correlation between marker genes and cross talk genes 

Marker gene Corss_talk gene r value Pvalue 

PIK3CG POU2AF1 0.8947 3.64E-05 

PIK3CG CXCL8 0.8287 0.000463 

PIK3CG CD38 0.8130 0.000728 

PIK3CG CXCR4 0.7838 0.001522 

PIK3CG MMP1 0.7455 0.003441 

PIK3CG IL1B 0.7209 0.005426 

PIK3CG TNFRSF11B 0.7173 0.005784 

PIK3CG TGM2 0.7135 0.006168 

PIK3CG PARK7 0.7041 0.007219 

PIK3CG SPP1 0.7040 0.007237 

PIK3CG MIR27A -0.7022 0.00745 

PIK3CG IL1RN -0.8077 0.000839 

PIK3CG IL34 -0.8126 0.000736 

SFRP4 MMP2 0.7913 0.001272 

SFRP4 POF1B -0.7107 0.006466 

CCR5 POF1B 0.7622 0.002454 

 

118 Marker gene-Target1 relationship pairs were obtained from the PPI network. Based on the KEGG database, 

6970 Marker gene-Pathway-Target2 relationship pairs were extracted. Screening genes in Target1 from the 

Target2 gene set yielded a total of 452 Target1-Marker gene-Pathway-Target1 closed-loop structures. A marker 

gene-related network was constructed using Cytoscape (Fig 3I). The network contains 100 nodes and 509 edges, 

which include 4 Marker genes, 2 cross-talk genes, 69 Target genes, and 25 Pathways. From the network, it can be 

observed that PIK3CG is involved in the PI3K-Akt signaling pathway, Apelin signaling pathway, Oxytocin 

signaling pathway, Chemokine signaling pathway, and other pathways. CCR5 is involved in the Chemokine 

signaling pathway and Cytokine-cytokine receptor interaction pathway. PRLR is involved in the Cytokine-

cytokine receptor interaction pathway, JAK-STAT signaling pathway, Prolactin signaling pathway, PI3K-Akt 

signaling pathway, and others. SFRP4 is involved in the Wnt signaling pathway. 

3.4 Drug Susceptibility Analysis of Marker Gene 

The prediction of drug sensitivity allows the identification of potential responding drugs for diseases. Drug 

sensitivity data in different cell lines and RNA-seq data of genes in different cells were obtained from the 

CellMiner database. The correlation between the 4 marker genes and different drugs was calculated. Pairs with a 

p-value < 0.05 and a correlation greater than or equal to 0.3 were selected as significant relationships. The top 3 

drugs that were significantly correlated with each marker gene were extracted and presented (Fig 4A-L). The drugs 

that were analyzed to have a high positive association with CCR5 were AM-5992, Megestrol acetate, and PF-2771 

(Fig 4A-C). Drugs highly positively correlated with PIK3CG were auranofin, Carmustine, and Ifosfamide (Fig 

4D-F). Drugs highly positively correlated with PRLR were Cilengitide, Olaparib, and PKI-587 (Fig 4G-I). Drugs 

highly positively correlated with SFRP4 were Caffeic acid, CEP-9722, and JNJ-38877605 (Fig 4J-L). 
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Figure 3. The relationship between marker genes and crosstalk genes 

(A) Marker gene and cross-talk gene correlation analysis; (B-E) The correlation between sample risk scores and 

four marker genes; (F-G) Expression level of marker gene in PI two data sets. the smaller the Pvalue value of 

Wilcoxon test result, the more significant the sample difference result, the more "*" on the graph, the P value and 

the "*" sign The correspondence is ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001. 

(H) ROC analysis of marker gene. (I) Marker gene-related pathway-PPI network.  
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The samples were categorized into high-risk and low-risk groups according to the median value of gene expression 

in the RNA-seq data for each marker gene. The scores of high-risk and low-risk groups in the drug sensitivity data 

were obtained. Differences between samples from different risk groups in the drug sensitivity data were analyzed 

using t-test, and the box-and-line plot shows the results of the gene and associated drug analysis in Fig4A-L (Fig 

4M-Y). For CCR5 and PIK3CG, the high-risk groups exhibited high sensitization activity for each of the three 

drugs of interest (Fig 4M-R). Olaparib and PKI-587 had low sensitization activity in the PRLR high-risk group 

(Fig 4U-V), while Cilengitide had low activity in both high and low-risk groups (Fig 4S). The three drugs highly 

positively correlated with SFRP4 did not differ in activity between the high and low-risk groups (Fig 4W-Y). Each 

drug and its multiple significantly related marker genes were extracted for network mapping (Fig 4Z). The results 

showed that BLU-667 was significantly positively correlated with SFRP4 and PRLR, and negatively correlated 

with PIK3CG. Camptothecin was significantly positively correlated with PIK3CG, SFRP4, and CCR5. 

 
Figure 4. (A-L) Drugs highly correlated with marker genes 
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(M-Y) Drug-sensitizing activity of significant drugs in different risk groups of marker gene. (Z) Relationship 

network of marker gene and drug. Where the thicker line represents the higher correlation.  

 

3.5 Immune Infiltration Analysis 

The PI dataset was analyzed according to CIBERSORT, selecting samples with p-value < 0.05 as significantly 

relevant, resulting in a total of 12 case samples and 10 control samples. The scores of immune cells in the samples 

are shown in Fig 5A, and the differences among 22 immune cells across different sample types were analyzed 

using the Wilcoxon test (Fig 5B). As a result, plasma cells, NK cells resting, and mast cells activated were highly 

enriched and significantly different in the disease group of PI. T cells follicular helper, NK cells activated, and 

mast cells resting were highly enriched and significantly different in the normal group. A matrix of 6 significantly 

different immune cell abundance scores was extracted, and these immune cells and their correlations with other 

immune cells were analyzed using Pearson correlation coefficients (Fig 5A). Additionally, the relationship 

between these immune cells and the 4 marker genes was predicted (Fig 5B). 

 
Figure 5. Immune cell infiltration analysis 
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(A) Heatmap of immune cell enrichment in case and control samples; (B) Differential enrichment of immune cells 

in case and control groups. Horizontal coordinates are immune cells and vertical coordinates are enrichment scores 

for infiltration analysis. (C) Significant differential immune cell correlation analysis; (D) The marker gene vs 

differential immune cell analysis; (E) clustering of single cells in bone; (F) expression of marker genes in single 

cells in bone; (G) clustering of single cells in PBMC; (H) expression of marker genes in single cells of PBMC.  

 

The results showed that T cells follicular helper was significantly positively correlated with macrophages M1 and 

dendritic cells resting (cor > 0.6). Plasma cells were significantly negatively correlated with NK cells activated 

(cor = -0.6027) and significantly positively correlated with monocytes (cor = 0.6485). NK cells activated were 

significantly negatively correlated with plasma cells (cor = -0.6027) and positively correlated with eosinophils 

(cor = 0.6712) (Fig 5C). CCR5 and PIK3CG were significantly positively correlated with plasma cells (cor > 0.5), 

with correlation coefficients of 0.7536 and 0.8386, respectively, and negatively correlated with NK cells activated 

(cor = -0.7407 and -0.7188, respectively). PRLR was significantly positively correlated with mast cells resting 

(cor = 0.6294) and significantly negatively correlated with plasma cells activated (cor = -0.7407 and -0.7188) (Fig 

5D). SFRP4 was significantly positively correlated with NK cells resting (cor = 0.6558) and negatively correlated 

with mast cells resting (cor = -0.6823) (Fig 5D). 

3.6 Expression Analysis of Marker Gene in Single Cells of Bone and PBMCs 

To analyze the clustering of peri-implantitis and osteoporosis single cells, the single-cell analysis results of bone 

marrow and PBMC were extracted from the HPA database. The expression of the four marker genes in bone and 

PBMC was obtained. From the results, the main cell groups in the bone were B-cells, erythroid cells, macrophages, 

plasma cells, and T-cells (Fig 5E). PIK3CG was highly expressed in plasma cells and T-cells; CCR5 was mainly 

highly expressed in T-cells and macrophages; PRLR and SFRP4 were lowly expressed in the cell clusters of the 

bone (Fig 5F). For PBMC, the following cell populations were mainly enriched: B-cells, dendritic cells, 

macrophages, monocytes, NK-cells, plasma cells, platelets, and T-cells (Fig 5G). In PBMC, PIK3CG was highly 

expressed in NK-cells, macrophages, T-cells, and monocytes; CCR5 was expressed mainly in T-cells; PRLR was 

highly expressed in macrophages; and SFRP4 was lowly expressed in the cell clusters of PBMC (Fig 5H). 

Based on the analysis of immune infiltration, it was hypothesized that in the bone of patients with PI disease, 

PIK3CG mainly plays a regulatory role on plasma cells and is positively correlated, while in the blood, it mainly 

acts on NK-cells and is negatively correlated. From the previous marker gene-related pathway results, it was 

obtained that PIK3CG and PRLR are involved in regulating the PI3K-Akt signaling pathway, SFRP4 is involved 

in regulating the Wnt signaling pathway, and PRLR and CCR5 are involved in regulating the cytokine-cytokine 

receptor signaling pathway. The pathway maps of these three pathways were downloaded from the KEGG database, 

and cross-talk genes were mapped to the pathways to obtain the roles of marker genes in the pathways (Fig 6A-

C). 

3.7 The Three Mediated Signaling Pathways  

PRLR and PIK3CG regulate the PI3K-Akt signaling pathway by activating other genes and compounds (Fig 6A). 

In the PI3K-Akt signaling pathway, PRLR affects C05981 (Phosphatidylinositol-3,4,5-trisphosphate) through the 

action of PIK3CA, and PIK3CG directly affects C05981, which promotes the expression of AKT1 and PDPK1, 

thereby affecting disease development. SFRP4 regulates the Wnt signaling pathway by mainly inhibiting the 

expression of related genes (Fig 6B). The CCR5-translated protein is an important co-receptor for the entry of 

macrophage viruses into host cells, and the gene is located in the chemokine receptor gene cluster region, which 

in turn affects the cytokine-cytokine receptor interaction pathway by being regulated by other family genes (Fig 

6C). 
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Figure 6. Regulation of PRLR, PIK3CG and SFRP4 in pathway 
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(A) PI3K-Akt signaling pathway; (B) Wnt signaling pathway. red nodes in the figure are up-regulated genes, green 

nodes are down-regulated genes, and pink nodes are genes that exist only in the DisGeNET database. (C) 

Regulation of CCR5 in Cytokine-cytokine receptor interaction. 

4. Discussion 

Recent research has highlighted the crucial roles of four marker genes—PIK3CG, SFRP4, CCR5, and PRLR—in 

the interconnected pathologies of PI and OP. The gene CCR5 is a chemokine receptor that binds to certain 

inflammatory molecules and mediates cell migration and activation (28). CCR5 mRNA and protein levels are 

higher in PI sites than in healthy sites (28). CCR5 may be involved in the recruitment and activation of 

inflammatory cells, such as macrophages and T cells, to the peri-implant tissues, contributing to tissue damage 

and bone resorption (28). CCR5 was also found to be expressed on both osteoblasts and osteoclasts, as well as on 

immune cells that affect bone remodeling. CCR5 mediates the effects of CCL3, CCL4, and CCL5 on osteoblast 

and osteoclast function, such as chemotaxis, survival, differentiation, and resorption. CCR5 and its ligands are 

elevated in osteoporosis patients, and play a role in osteoporosis by affecting bone metabolism and inflammation 

(29). CCR5 antagonists may have therapeutic potential for osteoporosis by inhibiting bone resorption and 

inflammation (29). Phosphoinositide 3-kinase gamma (PI3KCG) activates signaling molecules of inflammation, 

as it is a lipid kinase in leukocytes, which can generate phosphatidylinositol 3,4,5-trisphosphate, whereby it has 

pivotal roles in myeloid and lymphocyte cell migration (30). Until now, there is no clinical data linking PI3KCG 

with PI; however, another bioinformatics study revealed this Gene to be a hub gene in the interrelationship between 

PI and diabetes (31). Similarly, only a bioinformatics approach showed PI3KCG to be related with OP (32). 

Nevertheless, the potential role of this gene in PI and OP might underline the autoimmunity of both conditions, as 

PI3KCG is highly associated with autoimmune disease and inflammation (30). Thus, the findings of PIKCG as an 

important marker gene appears plausible and an interesting future approach. Secreted Frizzled Receptor Protein 4 

(SFRP4) is a receptor for Wnt ligands, whereby it is relevant in bone metabolism, especially as mediator of 

periosteal stem cell/progenitor expansion and differentiation (33). No previous report on its potential role in PI is 

available. For OP, several studies have been reported in this context. For example, a review article described that 

SFRP4, as an effector of cortical and trabecular bone metabolism, would be related to osteoporosis of the cortical 

bone (34). Moreover, it has been shown that SFRP4-dependent Wnt signaling would have a direct effect on age-

related bone loss and bone formation (35). A Korean study showed that a polymorphism of SRFP4 would be 

associated with bone mineral density in postmenopausal women (36). Taken together, although no literature is 

available for PI, the role of SRFP4 in bone metabolism and bone loss could explain its relevance in the interplay 

between PI and OP. PRLR is the prolactin receptor, which is associated with a modulation of a variety of 

inflammatory and immune processes, and thereby with different types of cancer (37)(38). One study, which 

investigated gingival tissue samples of PI patients found PRLR to be one out of six genes in the regulated ceRNA 

network (39). A recent review illustrated the multifarious occurrence of PRLR and its potential relevance in distinct 

cell types, including bone. Thus, a potential relevance in context of OP is also conceivable. Taken together, all of 

the four potential marker genes indicate a relationship between OP and PI via bone metabolism, inflammation and 

autoimmunity. Thereby, both diseases appear to have a distinct similarity.    

The interplay between PI and OP is significantly influenced by the regulation of three crucial signaling pathways: 

PI3K-Akt signaling, Wnt signaling, and cytokine-cytokine receptor interaction, each playing a distinctive yet 

interconnected role in both conditions. The PI3K-Akt signaling pathway plays a crucial role in the pathogenesis 

of PI, particularly in regulating inflammatory responses and bone resorption (40). It mediates the effects of 

proinflammatory cytokines, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin-6 (IL-6), and Interleukin-

8 (IL-8), which influence the expression of adhesion molecules, chemokines, and matrix metalloproteinases 

(MMPs) (41). These factors are involved in the recruitment and activation of inflammatory cells and the 

degradation of the extracellular matrix (41). Additionally, the PI3K/AKT pathway enhances osteoclastogenesis by 

stimulating the expression of Nuclear Factor of Activated T-cells cytoplasmic 1 (NFATc1), a key transcription 

factor for osteoclast differentiation, and inhibits osteoclast apoptosis by activating anti-apoptotic proteins such as 

Bcl-2 and Bcl-xL (42). PI3K/AKT signaling pathway is involved in the inhibition of OP through promoting 

osteoblast function and bone formation (43,44). In osteoporosis, the activation of PI3K/AKT signaling is impaired, 

leading to reduced osteoblast proliferation, differentiation, and mineralization (45). In cultured osteoblasts, the 

inhibition of PI3K/AKT signaling by a specific inhibitor reduces cell proliferation, differentiation, and 

mineralization, and increases apoptosis (45). 

While this research on PI and OP provides novel insights, there are certain limitations that need to be acknowledged. 

Firstly relying on computational analyses may oversimplify the intricate interplay between genetic molecular and 

environmental factors that impact bone health. These analyses are bound by predetermined assumptions, and may 
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not fully capture the complexity of biological systems in vivo. Another important limitation is the lack of diverse 

genetic and demographic data, which could limit the generalizability of the findings across different populations. 

Additionally an exclusive focus on genes and pathways might overlook other significant factors contributing to 

these diseases. The translation of model based discoveries into practice poses its own challenges necessitating 

extensive validation through clinical trials to establish the effectiveness and safety of potential treatments. 

Moreover, considering the nature of bone remodeling influenced by age hormonal changes and comorbidities adds 

further complexity and may restrict the applicability of study findings. Lastly developing treatment strategies for 

PI and OP is challenging due, to their multifactorial nature Influenced by lifestyle choices medications used and 

overall systemic health considerations. 

The research conducted on PI and OP has potential implications for clinical practice and future investigations. The 

discovery of genes such as PIK3CG, SFRP4, CCR5 and PRLR as well as the understanding of crucial pathways 

like PI3K Akt, Wnt signaling and cytokine cytokine receptor interactions offers a solid foundation in molecular 

studies that could potentially revolutionize current diagnostic methods and treatment approaches. These findings 

provide opportunities for the development of targeted therapies that may prove effective with fewer side effects 

than traditional treatments. For example exploring modulators of the Wnt pathway or PI3K Akt signaling could 

lead to medications designed specifically to address bone remodeling imbalances observed in both PI and OP. 

Moreover establishing connections between these two conditions allows for a more integrated approach towards 

managing bone related diseases. By understanding shared factors, comprehensive treatment plans can be 

developed to address both conditions simultaneously especially in patients who have a predisposition to both 

ailments. Additionally the genetic markers identified in this study could serve as tools for early detection and risk 

assessment purposes empowering healthcare providers with proactive strategies, for preventive care. 

5. Conclusion 

The current study showed that the marker genes PIK3CG, SFRP4, CCR5, and PRLR, along with the PI3K-Akt, 

Wnt, and cytokine-cytokine receptor interaction pathways, play pivotal roles in the pathogenesis of PI and OP. 

These findings not only enhance the understanding of the genetic and molecular underpinnings of these conditions, 

but also open avenues for targeted therapeutic interventions. The exploration of these genes and pathways offers 

valuable insights into potential strategies for treatment and prevention. However, further research is essential to 

translate these findings into clinical practice and to ensure their effectiveness and applicability in diverse patient 

populations. 
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