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Abstract 

This study investigates the driving factors of carbon emissions in the Chengdu-Chongqing urban agglomeration, 

a key economic region in western China, using the LMDI decomposition method and the STIRPAT model. The 

results reveal that energy structure optimization and energy consumption intensity reduction are the primary 

drivers of carbon emission reductions, highlighting the importance of clean energy adoption and improvements in 

energy efficiency. In contrast, economic growth and secondary industry expansion are the dominant contributors 

to carbon emission increases, reflecting the energy-intensive nature of industrial activities and the strong coupling 

between economic development and energy consumption. The tertiary industry exhibits a dual role, with its 

expansion reducing emissions in regions with higher levels of green transformation but increasing emissions in 

areas dominated by traditional service sectors. Industrial advancement (or industrial structural upgrading) emerges 

as a critical strategy for mitigating emissions, while population size has a relatively small direct impact, though 

urbanization amplifies emissions in high-density areas. 

This study contributes methodologically by integrating the LMDI and STIRPAT approaches, providing a robust 

framework for analyzing carbon emission drivers. Empirically, it highlights significant regional heterogeneity in 

emission drivers across counties and districts, offering valuable insights for targeted low-carbon development 

strategies. The findings underscore the need to accelerate clean energy adoption, enhance energy efficiency, 

promote green industrial transformation, and optimize urbanization patterns. These results provide a scientific 

basis for formulating policies to achieve carbon neutrality and sustainable development in the Chengdu-Chongqing 

urban agglomeration. 

Keywords: Carbon Emissions, LMDI and STIRPAT Models, Industrial Advancement, Chengdu-Chongqing 

Region 

1. Introduction 

1.1 Research Background 

Global climate change has become one of the most pressing challenges of the 21st century, drawing significant 

attention from the international community. The increasing severity of climate-related impacts has underscored 

the urgency of implementing effective global strategies to mitigate greenhouse gas emissions, with reducing 

carbon dioxide (CO₂) emissions being a central focus for achieving sustainable development. As one of the largest 

carbon-emitting nations and the world's largest developing country, China plays a pivotal role in addressing global 

climate challenges. 

China has made substantial commitments to global climate governance. In 2015, the country submitted its 

"Enhanced Actions on Climate Change - Intended Nationally Determined Contributions (INDCs)" to the United 

Nations Framework Convention on Climate Change (UNFCCC). This document outlined specific goals, including 

peaking carbon emissions by around 2030, reducing CO₂ emissions per unit of GDP by 60–65% relative to 2005 

levels, increasing the share of non-fossil energy in primary energy consumption to 20%, and expanding forest 

stock volume by 4.5 billion cubic meters compared to 2005. These commitments reflect China's active 

participation in global sustainability efforts. 

In 2020, China further reinforced its climate ambitions by announcing its "Dual Carbon" goals, which aim to 

achieve peak carbon emissions before 2030 and carbon neutrality by 2060. These targets provide a strategic 

framework for transitioning toward a low-carbon economy, emphasizing energy conservation, emission reduction, 
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and ecological transformation. However, achieving these goals requires a nuanced understanding of the drivers of 

carbon emissions, particularly at the regional level, where economic and industrial characteristics vary 

significantly. 

The Chengdu-Chongqing region, located in southwestern China, has emerged as a critical economic hub 

characterized by rapid development and urbanization. As one of the most advanced urban clusters in the country, 

the region plays a strategic role in national initiatives such as the Belt and Road Initiative and the Yangtze River 

Economic Belt. However, its rapid economic growth has been accompanied by rising carbon emissions, posing 

significant challenges to balancing environmental sustainability with economic development. This highlights the 

urgent need for effective carbon reduction policies tailored to the region's unique characteristics. 

1.2 Significance of the Study 

The problem of rising carbon emissions in the Chengdu-Chongqing region deserves new research due to its unique 

economic and industrial landscape. While industrial upgrading is widely recognized as a pathway for harmonizing 

economic growth and environmental sustainability, the mechanisms through which structural transformation 

impacts carbon emissions remain underexplored. 

The Chengdu-Chongqing region serves as a crucial case study for understanding these dynamics. As a major 

economic engine in southwestern China, the region represents a microcosm of the challenges facing rapidly 

urbanizing and industrializing areas across the country. Rising emissions in this region highlight the tension 

between economic expansion and environmental sustainability, emphasizing the urgency of identifying effective 

strategies to reduce carbon intensity while maintaining economic growth. 

This research addresses the need to explore the interaction between industrial structural advancement and carbon 

emissions, particularly in regions with diverse development levels. By examining the Chengdu-Chongqing region, 

the study aims to provide actionable insights for designing region-specific carbon reduction strategies that align 

with China’s broader sustainability goals. 

1.3 Relevant Research 

Industrial advancement, energy consumption, and technological progress are critical factors influencing carbon 

emissions, and their interactions have been extensively studied using various analytical frameworks. This section 

synthesizes the relevant literature on industrial structural upgrading, the application of the LMDI decomposition 

method, and the STIRPAT model, highlighting their contributions to understanding carbon emission dynamics 

and identifying gaps for further exploration. 

Industrial structural upgrading is widely regarded as a key pathway for achieving economic growth while reducing 

environmental impacts. Theoretical studies suggest that transitioning from resource- and labor-intensive industries 

to capital- and technology-intensive sectors optimizes resource allocation, enhances energy efficiency, and 

promotes technological innovation, thereby reducing carbon emissions per unit of economic output (Zhou Lin et 

al., 1987). Empirical research has demonstrated that while industrialization initially increases energy consumption 

and emissions, the adoption of cleaner technologies and less energy-intensive industries can mitigate emissions 

over time. For instance, in the Chengdu-Chongqing region, the uneven pace of industrial transformation across 

sub-regions has resulted in varying emission patterns, underscoring the importance of understanding regional 

characteristics to devise effective low-carbon strategies (Niu Zhensheng et al., 2024). 

The Logarithmic Mean Division Index (LMDI) decomposition method has been widely applied to analyze the 

driving factors of carbon emissions due to its adaptability and ability to quantify the contributions of various factors, 

such as energy structure, energy intensity, and economic activity. Studies in China have revealed that economic 

growth is the primary driver of carbon emissions, while improvements in energy intensity have played a critical 

role in mitigating emission increases (Guo Chaoxian et al., 2010). Globally, similar findings have been reported, 

with research in the United States highlighting the importance of structural improvements in energy generation 

and consumption for reducing emissions (Ferdinand et al., 2010). Despite its widespread application, the use of 

the LMDI method to analyze regional disparities in emission drivers remains limited. Applying this approach to 

the Chengdu-Chongqing region can provide valuable insights into the contributions of industrial, economic, and 

energy-related factors to carbon emissions. 

The STIRPAT model (Stochastic Impacts by Regression on Population, Affluence, and Technology) extends the 

classical IPAT framework by incorporating stochastic variations and nonlinear relationships, making it a flexible 

tool for analyzing the drivers of carbon emissions. Studies using the STIRPAT model have highlighted the 

significant roles of population growth, economic affluence, and technological progress in driving emissions (Wang 

Xiaoting & Gao Jixi, 2009). Advanced versions of the model have incorporated geographic and temporal effects, 
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enabling more detailed analyses of spatial variations in emission drivers (Zhang Huilin, 2019). Additionally, the 

STIRPAT model has been used to assess emission mitigation pathways, such as predicting carbon peaking 

timelines in regions like the Yangtze River Economic Belt (Tian Ze et al., 2021). However, integrating the 

STIRPAT model with complementary methods, such as the LMDI decomposition approach, remains 

underexplored. Combining these methods can yield more robust insights into the demographic, economic, and 

technological factors influencing carbon emissions in the Chengdu-Chongqing region. 

1.4 Research Design 

To address the issue of rising carbon emissions in the Chengdu-Chongqing region and explore the role of industrial 

structural advancement in mitigating these emissions, this study adopts a dual analytical framework that integrates 

the Logarithmic Mean Division Index (LMDI) decomposition method and the STIRPAT model (Stochastic 

Impacts by Regression on Population, Affluence, and Technology). This approach provides a comprehensive 

means of analyzing the factors driving carbon emissions and their interactions with industrial structural dynamics. 

The LMDI decomposition method is employed to quantify the contributions of key factors—such as industrial 

structure, energy intensity, and economic activity—to changes in carbon emissions. This method is particularly 

well-suited for identifying the specific drivers of emissions and their relative importance over time. By applying 

the LMDI method to the Chengdu-Chongqing region, the study captures the dynamic interplay between economic 

growth, energy consumption, and carbon emissions, offering insights into how industrial transformation influences 

emission trends. 

The STIRPAT model complements the LMDI analysis by examining the effects of demographic, technological, 

and consumption-related variables on carbon emissions. This model allows for the inclusion of stochastic 

variations and nonlinear relationships, making it effective for analyzing the complex interactions between 

population growth, economic affluence, and technological progress. By incorporating regional data, the STIRPAT 

model provides a broader perspective on how socioeconomic and technological factors shape emission patterns 

across the Chengdu-Chongqing region. 

The integration of these two methods ensures a robust and multidimensional analysis of the drivers of carbon 

emissions. While the LMDI method focuses on decomposing and quantifying the contributions of specific factors, 

the STIRPAT model provides a more holistic understanding of the broader socioeconomic and technological 

influences. Together, these methods enable the study to evaluate the mechanisms through which industrial 

structural advancement impacts carbon emissions and to identify actionable insights for policy development. 

This research design is tailored to address the unique characteristics of the Chengdu-Chongqing region, where 

rapid economic growth and industrial transformation have created significant challenges for balancing 

environmental sustainability with development goals. By combining theoretical perspectives with empirical 

analysis, the study provides a rigorous framework for understanding and addressing the drivers of carbon emissions 

in this critical economic hub. 

2. Method 

This study integrates multiple analytical frameworks and datasets to investigate the spatial and temporal dynamics 

of energy consumption and carbon emissions in the Chengdu-Chongqing region. The frameworks include the 

Logarithmic Mean Division Index (LMDI) decomposition method and the Stochastic Impacts by Regression on 

Population, Affluence, and Technology (STIRPAT) model. Furthermore, high-resolution energy consumption data 

were estimated using nighttime light data in combination with existing statistical yearbooks and carbon emission 

datasets. 

2.1 Study Area: Chengdu-Chongqing Region 

The Chengdu-Chongqing region, located in southwestern China, is characterized by its dual role as both a major 

economic center and a key national ecological barrier. Covering an area of approximately 185,000 square 

kilometers, the region includes Sichuan Province and Chongqing Municipality, with a combined population 

exceeding 100 million. Rapid industrialization and urbanization have driven significant economic growth in the 

region, solidifying its position as a crucial hub in China's Western Development Strategy and Belt and Road 

Initiative. However, this expansion has also led to high energy consumption and associated carbon emissions, 

posing challenges for sustainable development and environmental protection. 

The Chengdu-Chongqing region exhibits marked spatial and economic heterogeneity. Chengdu and Chongqing 

serve as the urban cores driving regional development, while surrounding cities and counties have varied economic 

models, ranging from agriculture-based economies to industrial manufacturing hubs. These variations provide a 

unique opportunity to explore localized drivers of energy consumption and carbon emissions, which are critical 
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for implementing effective carbon reduction policies tailored to the region's diverse conditions. This study focuses 

on the region's carbon emission dynamics with the aim of providing actionable insights to inform "Dual Carbon" 

objectives. 

2.2 LMDI Decomposition Framework 

Appropriate identification of research participants is critical to the science and practice of psychology, particularly 

for generalizing the findings, making comparisons across replications, and using the evidence in research syntheses 

and secondary data analyses. If humans participated in the study, report the eligibility and exclusion criteria, 

including any restrictions based on demographic characteristics. 

The LMDI decomposition method, derived from the Kaya identity, is employed to analyze the driving forces 

behind energy-related carbon emissions in the Chengdu-Chongqing region. The Kaya identity expresses carbon 

emissions (C) as a product of four factors—energy consumption (E) per unit of carbon emissions, energy intensity 

(E/Y), economic intensity per capita (Y/P), and population (P)—as follows: 

𝐶 =
𝐶

𝐸
×
𝐸

𝑌
×
𝑌

𝑃
× 𝑃 (1) 

To better quantify the contributions of specific socioeconomic and industrial factors to carbon emission changes, 

this framework is expanded into seven components: 1) energy structure intensity (ES, the carbon emissions per 

unit of energy consumption), 2) energy consumption intensity (EI, energy consumption per unit GDP), 3) tertiary 

industry share (A, the reciprocal of tertiary industry as a share of GDP), 4) industrial upgrading (B, the ratio of 

tertiary to secondary industry output), 5) secondary industry share (Γ, secondary industry as a share of GDP), 6) 

per capita GDP (PGDP), and 7) population size (P): 

𝐶𝑂2 =
𝐶𝑂2

𝐸
×

𝐸

𝐺𝐷𝑃
×
𝐺𝐷𝑃

𝑖𝑖𝑖
×
𝑖𝑖𝑖

𝑖𝑖
×

𝑖𝑖

𝐺𝐷𝑃
×
𝐺𝐷𝑃

𝑃𝑂𝑃
× 𝑃𝑂𝑃 (2) 

The additive LMDI decomposition method is applied in this study, whereby changes in carbon emissions between 

the baseline year (2000) and year t are represented as: 

∆𝐶 = Ct − C0 = ∆𝐸𝑆 + ∆𝐸𝐼 + ∆A + ∆B + ∆Γ + ∆𝑃𝐺𝐷𝑃 + ∆𝑃 (3) 

The contribution of each factor is calculated using logarithmic weights, ensuring a consistent and robust 

decomposition. This approach allows for a clear quantification of the distinct roles of energy structure, industrial 

composition, population growth, and economic development in driving changes in carbon emissions. 

2.3 STIRPAT Model Framework 

Describe the procedures for selecting participants, including (a) the sampling method, if a systematic sampling 

plan was used; (b) the percentage of the sample approached that participated; and (c) the number of participants 

who selected themselves into the sample. Describe the settings and locations in which the data were collected as 

well as any agreements and payments made to participants, agreements with the institutional review board, ethical 

standards met, and safety monitoring procedures. 

To further analyze the relationship between socioeconomic factors and carbon emissions, the STIRPAT model is 

employed. The STIRPAT model, an extension of the IPAT framework, introduces stochastic flexibility and allows 

for nonlinear relationships between variables. It is particularly useful for regional and urban studies, where 

heterogeneity in population, affluence, and technology levels can significantly influence environmental impacts. 

The general form of the STIRPAT model is as follows: 

𝐼𝑖 = 𝛼 × 𝑃𝑖
𝜃 × 𝐴𝑖

𝛽
× 𝑇𝑖

𝛿 × 𝑒𝑖 (4) 

In this expression, 𝐼𝑖 represents environmental impact (carbon emissions), 𝑃𝑖  represents population 

size, 𝐴𝑖represents affluence (GDP per capita), and 𝑇𝑖  refers to technology level or energy intensity, while 𝛼, 𝜃, 𝜃, 

and 𝛿 are parameters capturing the respective elasticities. 𝑒𝑖 is a stochastic error term. 

To align the STIRPAT model with the LMDI framework, this study extends the basic model by incorporating 

additional factors, including energy structure (ES), energy consumption intensity (EI), tertiary industry share (A), 

industrial upgrading (B), secondary industry share (Γ), per capita GDP (PGDP), and population size (P). The 

extended model is expressed as: 

𝐶𝑖 = 𝑎 × 𝐸𝑆𝑖
𝑠 × 𝐸𝐼𝑖

𝑖 × 𝐴𝑖
𝛼 × 𝐵𝑖

𝛽
× Γ𝑖

𝛾
× 𝑃𝐺𝐷𝑃𝑖

𝑔
× 𝑃𝑖

𝑝
× 𝑒𝑖 (5) 

Log-linearization is applied for regression analysis: 
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ln(𝐶𝑖) = ln 𝑎 + 𝑠 ln(𝐸𝑆𝑖) + 𝑖 ln(𝐸𝐼𝑖) + 𝛼 ln(𝐴𝑖) + 𝛽 ln(𝐵𝑖) + 𝛾 ln(Γ𝑖) + 𝑔 ln(𝑃𝐺𝐷𝑃𝑖) +𝑝 ln(𝑃𝑖) + ln(𝑒𝑖) (6) 

This extended STIRPAT model captures nuanced elasticities and regional variability, enabling a comprehensive 

investigation of the socio-economic drivers of carbon emissions in the Chengdu-Chongqing region. 

2.4 Data Sources and Processing 

This study integrates multiple datasets to analyze energy consumption and carbon emissions in the Chengdu-

Chongqing region. The data sources include statistical yearbooks, nighttime light data, and gridded carbon 

emission datasets, which together provide a comprehensive foundation for the analysis. 

Population, GDP, and industrial structure data at the provincial and municipal levels were obtained from the 

Chongqing Statistical Yearbook, Sichuan Statistical Yearbook, and the China Energy Statistical Yearbook. These 

datasets provide detailed information on socio-economic indicators, which are essential for the LMDI 

decomposition and STIRPAT model analyses. Nighttime light data, sourced from the Harvard Dataverse, were 

derived from the NPP-VIIRS dataset, which offers high-resolution annual composite images of nighttime light 

intensity. These data have been widely validated for their ability to reflect human activity and energy consumption. 

Carbon emission data were obtained from the ODIAC database, which provides gridded CO₂ emission data based 

on fossil fuel consumption and industrial processes. Together, these datasets enable a detailed investigation of the 

spatiotemporal dynamics of energy consumption and carbon emissions in the Chengdu-Chongqing region. 

2.4.1 Energy Consumption Estimation Using Nighttime Light Data 

Along with the description of subjects, give the mended size of the sample and number of individuals meant to be 

in each condition if separate conditions were used. State whether the achieved sample differed in known ways 

from the target population. Conclusions and interpretations should not go beyond what the sample would warrant. 

This study integrates multiple datasets to analyze energy consumption and carbon emissions in the Chengdu-

Chongqing region. The data sources include statistical yearbooks, nighttime light data, and gridded carbon 

emission datasets, which together provide a comprehensive foundation for the analysis. 

Population, GDP, and industrial structure data at the provincial and municipal levels were obtained from the 

Chongqing Statistical Yearbook, Sichuan Statistical Yearbook, and the China Energy Statistical Yearbook. These 

datasets provide detailed information on socio-economic indicators, which are essential for the LMDI 

decomposition and STIRPAT model analyses. Nighttime light data, sourced from the Harvard Dataverse, were 

derived from the NPP-VIIRS dataset, which offers high-resolution annual composite images of nighttime light 

intensity. These data have been widely validated for their ability to reflect human activity and energy consumption. 

Carbon emission data were obtained from the ODIAC database, which provides gridded CO₂ emission data based 

on fossil fuel consumption and industrial processes. Together, these datasets enable a detailed investigation of the 

spatiotemporal dynamics of energy consumption and carbon emissions in the Chengdu-Chongqing region. 

To estimate energy consumption at the municipal and county levels, this study employed a regression-based 

approach that combines nighttime light data with provincial energy consumption statistics. Previous studies have 

demonstrated that nighttime light intensity is strongly correlated with regional energy consumption, making it a 

reliable proxy for estimating energy use at finer spatial scales (Wu et al., 2014). Building on this foundation, this 

study developed a regression model to downscale provincial energy consumption data to the municipal level. 

Three types of regression relationships—exponential, linear, and logarithmic—were tested to determine the 

optimal model. The results indicated that the no-intercept linear model provided the best fit. This finding is 

consistent with the conclusions of Wu et al. (2014), who also observed that nighttime light data exhibit a strong 

linear relationship with energy consumption at the municipal level. The no-intercept model was chosen for both 

theoretical and practical reasons. Theoretically, when nighttime light intensity (DN) is zero, energy consumption 

(E) should also be zero, as areas without light emissions are unlikely to consume energy. Including an intercept 

term would contradict this assumption and could introduce bias into the results. Practically, the inclusion of an 

intercept term was found to reduce the explanatory power of the model, further supporting the decision to adopt a 

no-intercept approach. The final model is expressed as: 

𝐸 = 𝑘𝐷𝑁 (7) 

where E represents total energy consumption, k is the regression coefficient, and DN is the sum of raster pixel 

values (digital numbers) from the nighttime light data. Using this model, regression analyses were conducted for 

the years 2000 to 2022. The regression coefficients (k) and goodness-of-fit values (𝑅2) for each year are presented 

in Table 1: 
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Table 1. Regression Results of NTL and Provincial Energy Consumption (2000–2022) 

Year k 𝑅2 

2000 0.014367 0.885096 

2001 0.014812 0.889596 

2002 0.015051 0.905128 

2003 0.015456 0.904927 

2004 0.017507 0.919346 

2005 0.020492 0.938136 

2006 0.019539 0.930637 

2007 0.020816 0.93114 

2008 0.021119 0.926368 

2009 0.023801 0.92552 

2010 0.020922 0.93329 

2011 0.021649 0.918082 

2012 0.022025 0.930916 

2013 0.020819 0.942159 

2014 0.021087 0.936215 

2015 0.021238 0.933707 

2016 0.022177 0.92918 

2017 0.016454 0.94757 

2018 0.016525 0.94621 

2019 0.015223 0.942477 

2020 0.016649 0.942512 

2021 0.015755 0.948487 

2022 0.010425 0.937906 

 

As shown in Table 1, the regression results demonstrate high accuracy across all years, with 𝑅2 values consistently 

above 0.85. These results confirm the robustness of the no-intercept linear model and its suitability for estimating 

energy consumption at the municipal level. By integrating nighttime light data with provincial energy statistics, 

this approach addresses the limitations of traditional energy statistics, which often lack spatial resolution, and 

provides high-resolution energy consumption estimates for the Chengdu-Chongqing region. 

The estimated energy consumption data serve as the foundation for the subsequent LMDI decomposition and 

STIRPAT model analyses. This high-resolution dataset not only supports the investigation of carbon emission 

drivers but also offers new insights into the spatiotemporal distribution of energy consumption in the region. 

3. Results 

3.1 Results of the LMDI Decomposition Analysis 

The LMDI decomposition analysis provides a detailed quantitative assessment of the factors influencing carbon 

emissions in the Chengdu-Chongqing urban agglomeration from 2000 to 2022. The analysis decomposes carbon 

emission changes into seven driving factors: energy structure intensity (∆ES), energy consumption intensity (∆EI), 

tertiary industry scale effect (∆A), industrial upgrading effect (∆B), secondary industry scale effect (∆Γ), economic 

effect (∆PGDP), and population scale effect (∆P). Each factor in formula (3) is calculated as: 

∆𝐸𝑆 = 𝑊 ln
𝐸𝑆𝑡

𝐸𝑆0
, 

∆𝐸𝐼 = 𝑊 ln
𝐸𝐼𝑡

𝐸𝐼0
, 

∆𝐴 = 𝑊 ln
𝐴𝑡

𝐴0
, 

∆𝐵 = 𝑊 ln
𝐵𝑡

𝐵0
, 

∆Γ = 𝑊 ln
Γ𝑡

Γ0
, 
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∆𝑃𝐺𝐷𝑃 = 𝑊 ln
𝑃𝐺𝐷𝑃𝑡

𝑃𝐺𝐷𝑃0
, 

∆𝑃 = 𝑊 ln
𝑃𝑡

𝑃0
 , 

where W is defined as: 

𝑊 =
𝐶𝑡−𝐶0

ln 𝐶𝑡−ln 𝐶0
; 

to facilitate interpretation, the contribution rates of each factor to carbon emission changes are calculated as: 

𝜃𝐸𝑆 =
∆𝐸𝑆

∆𝐶
× 100%, 

𝜃𝐸𝐼 =
∆𝐸𝐼

∆𝐶
× 100%, 

𝜃𝐴 =
∆𝐴

∆𝐶
× 100%, 

𝜃𝐵 =
∆𝐵

∆𝐶
× 100%, 

𝜃𝛤 =
∆𝛤

∆𝐶
× 100%, 

𝜃𝑃𝐺𝐷𝑃 =
∆𝑃𝐺𝐷𝑃

∆𝐶
× 100%, 

𝜃𝑃 =
∆𝑃

∆𝐶
× 100%. 

The results of the LMDI decomposition analysis are summarized in Table 1, which presents the contribution rates 

of each factor from 2001 to 2022. The findings reveal that energy structure optimization (∆ES), energy 

consumption intensity reduction (∆EI), and industrial upgrading (∆B) are the primary contributors to carbon 

emission reductions, while economic growth (∆PGDP) and the expansion of the secondary industry (∆Γ) are the 

main drivers of carbon emission increases. Population scale effects (∆P) and tertiary industry scale effects (∆A) 

have relatively minor impacts. 

 

Table 2. LMDI Result 

Year ES EI A B Γ PGDP p 

2001 -507% 205% -64% -26% 90% 387% 15% 

2002 -55% 57% -9% -13% 22% 94% 3% 

2003 -18% 33% -3% -18% 21% 89% -4% 

2004 -44% 37% 0% -27% 27% 122% -15% 

2005 -34% 34% 4% -32% 28% 109% -10% 

2006 -26% 22% 6% -38% 33% 112% -8% 

2007 -23% 9% 8% -44% 36% 120% -7% 

2008 -13% -6% 9% -46% 37% 125% -6% 

2009 -27% -2% 11% -50% 39% 133% -5% 

2010 -23% -7% 14% -54% 40% 135% -5% 

2011 -11% -21% 15% -56% 41% 137% -5% 

2012 -15% -25% 16% -58% 42% 144% -4% 

2013 -23% -23% 16% -59% 43% 149% -4% 

2014 -37% -17% 16% -60% 43% 157% -3% 

2015 -41% -22% 16% -60% 44% 166% -2% 

2016 -53% -19% 15% -59% 44% 174% -2% 

2017 -42% -35% 14% -58% 44% 177% -1% 
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2018 -46% -31% 13% -55% 42% 177% 0% 

2019 -42% -36% 12% -53% 41% 178% 0% 

2020 -36% -41% 12% -52% 40% 176% 2% 

2021 -34% -44% 11% -49% 38% 176% 2% 

2022 -51% -30% 12% -51% 39% 179% 2% 

 

3.1.1 Analysis of Factors Influencing Carbon Emissions  

To better understand the driving forces behind carbon emissions in the Chengdu-Chongqing urban agglomeration, 

this section provides a detailed analysis of the contribution rates of various factors. By examining the roles of 

energy structure, energy consumption intensity, industrial and economic effects, and population dynamics, we can 

identify both the progress made and the challenges that remain in achieving carbon reduction goals. The following 

subsections discuss each factor in detail. 

Energy structure (∆ES) optimization consistently exhibited a negative contribution to carbon emissions, with an 

average contribution rate of -36% over the study period. This finding highlights the significant role of clean energy 

adoption, such as hydropower and renewable energy, in mitigating emissions. Notably, in 2001, the contribution 

rate reached -507%, reflecting the initial phase of clean energy adoption. However, the effectiveness of energy 

structure optimization has fluctuated over time, with a decline in its impact during certain years, such as 2020 (-

36%) and 2022 (-51%). These results suggest that while progress has been made, further efforts are needed to 

accelerate the transition to clean energy. 

The contribution rate of energy consumption intensity (∆EI) to carbon emissions demonstrates a clear temporal 

pattern. In the early years (before 2007), energy consumption intensity had a positive contribution, indicating that 

low energy efficiency exacerbated carbon emissions. For example, in 2001, the contribution rate was 205%. 

However, with advancements in energy-saving technologies and improvements in energy utilization efficiency, 

the contribution rate turned negative after 2007, reaching -44% in 2021. This shift underscores the growing 

importance of technological innovation and energy efficiency improvements in reducing emissions. 

The tertiary industry scale effect (∆A) generally exhibited a positive contribution to carbon emissions, with an 

average contribution rate of 12%. This finding suggests that while the tertiary industry is characterized by low-

carbon attributes, its rapid expansion has increased energy demand and emissions. For instance, in 2010, the 

contribution rate was 14%, but it decreased to 12% in 2022. These results highlight the need for further green 

transformation of the tertiary industry to maximize its potential for emission reductions. 

Industrial upgrading (∆B) consistently contributed to emission reductions, with an average contribution rate of -

51%. This result demonstrates the effectiveness of transitioning from energy-intensive industries to high-tech and 

service-oriented sectors in mitigating carbon emissions. The impact of industrial upgrading was particularly 

significant in the early years, such as 2010 (-54%) and 2015 (-60%), reflecting the initial stages of structural 

optimization. However, its contribution has slightly weakened in recent years, indicating that additional efforts are 

needed to sustain the momentum of industrial upgrading. 

The secondary industry scale effect (∆Γ) was a significant positive driver of carbon emissions, with an average 

contribution rate of 40%. The expansion of energy-intensive industries has led to increased energy consumption 

and emissions, particularly during the mid-study period (e.g., 2010, 2015). This finding underscores the ongoing 

reliance of the Chengdu-Chongqing urban agglomeration on industrial activities and highlights the need for green 

industrial transformation to curb emissions from this sector. 

Economic growth (∆PGDP) emerged as the largest positive contributor to carbon emissions, with an average 

contribution rate of 135%. This finding reflects the strong coupling between economic development and energy 

consumption in the region. For example, in 2022, the contribution rate of economic growth was 179%, highlighting 

the region's reliance on carbon-intensive activities to drive economic expansion. These results emphasize the 

importance of decoupling economic growth from carbon emissions through the development of low-carbon 

technologies and sustainable economic models. 

The population scale effect (∆P) had a relatively small positive contribution to carbon emissions, with an average 

contribution rate of 2%. Although population growth increases energy demand and emissions, its impact is 

moderated by urbanization and improved living standards. For instance, in 2022, the contribution rate was 2%, 

indicating that population growth has not been a major driver of carbon emissions in the Chengdu-Chongqing 

urban agglomeration. 
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3.1.2 Comparison with Existing Studies  

The findings of this study align with those of Fu Junyue (2023), Chen Feng et al. (2022), and Liu Maohui et al. 

(2023) regarding the effects of energy structure, energy consumption, and economic growth. All studies highlight 

the suppressive effect of clean energy adoption on carbon emissions, the temporal variability of energy 

consumption intensity contributions, and the dominant role of economic growth as a driver of emissions. However, 

this study diverges from Liu Maohui et al. (2023) regarding the role of the tertiary industry. While Liu’s study 

found a significant contribution of the tertiary industry to emission reductions in Tianjin, the results here suggest 

a limited impact in the Chengdu-Chongqing urban agglomeration. This discrepancy may be attributed to the 

relatively lower development level of the tertiary industry in the Chengdu-Chongqing region, indicating significant 

potential for further optimization. 

3.2 Results of the STIRPAT Model Analysis 

Analysis of data and the reporting of the results of those analyses are fundamental aspects of the conduct of 

research. Accurate, unbiased, complete, and insightful reporting of the analytic treatment of data (be it quantitative 

or qualitative) must be a component of all research reports. Researchers in the field of psychology use numerous 

approaches to the analysis of data, and no one approach is uniformly preferred as long as the method is appropriate 

to the research questions being asked and the nature of the data collected. The methods used must support their 

analytic burdens, including robustness to violations of the assumptions that underlie them, and they must provide 

clear, unequivocal insights into the data. 

To further explore the driving factors of carbon emissions in the Chengdu-Chongqing urban agglomeration, this 

study employs the STIRPAT model, which decomposes carbon emissions into multiple influencing factors, 

including energy structure, energy consumption intensity, tertiary industry scale effect, industrial upgrading, 

secondary industry scale effect, per capita GDP, and population size. The STIRPAT model is expressed as follows: 

ln(𝐶𝑖) = ln 𝑎 + 𝑠 ln(𝐸𝑆𝑖) + 𝑖 ln(𝐸𝐼𝑖) + 𝛼 ln(𝐴𝑖) + 𝛽 ln(𝐵𝑖) + 𝛾 ln(Γ𝑖) + 𝑔 ln(𝑃𝐺𝐷𝑃𝑖) +𝑝 ln(𝑃𝑖) + ln(𝑒𝑖) (6) 

The carbon emissions of region i, denoted as 𝐶𝑖, are influenced by several key factors. The share of clean energy 

in the energy mix, represented by 𝐸𝑆𝑖, reflects the impact of energy structure optimization on carbon emissions, 

with the coefficient s quantifying this effect. Energy consumption intensity, denoted as 𝐸𝐼𝑖 , captures the role of 

energy efficiency improvements, with the coefficient i measuring its contribution to emission reductions. 

Additionally, the tertiary industry scale effect and industrial upgrading are represented by 𝐴𝑖 and 𝐵𝑖 , respectively, 

with their corresponding coefficients α and β indicating the extent to which these factors contribute to emissions. 

The secondary industry scale effect, represented by Γ𝑖, reflects the impact of industrial expansion on emissions, 

with the coefficient γ quantifying this relationship. Economic development, measured by per capita GDP (𝑃𝐺𝐷𝑃𝑖), 
is another critical factor, with the coefficient g capturing its influence on emissions. Finally, population size, 

represented by 𝑃𝑖 , highlights the impact of population growth on emissions, with the coefficient p measuring this 

effect. The error term, denoted as ln(𝑒𝑖), accounts for any unexplained variation in the model. 

3.2.1 Model Estimation and Data Processing  

To address multicollinearity among the explanatory variables, this study adopts the Partial Least Squares (PLS) 

regression method, which ensures the robustness and reliability of the model results. The data used in the analysis 

are derived from statistical yearbooks, energy consumption data, and carbon emission accounting results for each 

county and district within the Chengdu-Chongqing urban agglomeration. 

The PLS regression results indicate that the model has a high explanatory power, with the R² values for most 

counties and districts exceeding 0.8. This suggests that the model can effectively explain the variation in carbon 

emissions across the region. The regression results for key factors are summarized in Table 3. 

 

Table 3. STIRPAT Result 

City R² ES EI A B Γ PGDP P 

Wanzhou District  0.92 -0.50 -0.13 37313.46 -143325.23 49324.53 3.50 -0.63 

Fengdu County  0.78 0.13 0.00 36181.48 -45430.51 62689.48 0.79 -0.07 

Leshan City  0.89 -0.43 -0.18 44581.27 -468987.76 632952.53 6.32 -0.98 

Jiulongpo District  0.86 -0.14 -0.43 -1550153.47 -2225681.58 4570938.12 5.39 0.36 

Yunyang County  0.86 0.06 0.01 -83976.81 -53868.64 51948.08 1.06 -0.13 

Neijiang City  0.95 -0.12 -0.55 243162.20 -935186.60 1033552.46 6.85 -0.33 

Beibei District  0.88 0.25 -0.11 50536.88 -201829.96 345000.81 1.08 0.27 
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Nanchong City  0.96 -0.69 -0.27 94825.42 -342846.75 911709.95 16.97 -0.13 

Nan'an District  0.79 0.47 -0.07 41676.61 -364647.95 444217.91 1.70 0.15 

Nanchuan District  0.98 -0.10 -0.09 -50195.05 -259134.77 229544.92 0.69 0.02 

Hechuan District  0.95 -0.36 -1.65 -601015.70 -852443.97 1668862.16 9.08 -0.35 

Dianjiang County  0.81 0.17 0.04 32815.92 -61867.31 68560.49 0.73 -0.27 

Dadukou District  0.84 -0.08 -0.08 28053.28 -226474.06 -15149.67 0.96 0.24 

Dazu District  0.96 -0.16 -0.15 27076.01 -135613.38 274571.46 1.10 -0.03 

Yibin City  0.98 -0.50 0.16 475734.88 -1660692.37 2151094.44 18.80 -0.64 

Banan District  0.73 -0.08 -0.02 26035.14 -320504.90 279757.88 0.85 0.07 

Guang'an City  0.96 -0.49 -0.33 286081.77 -874535.92 950762.19 18.33 -0.20 

Kaizhou District  0.96 -0.13 -0.09 64398.01 -183568.93 293553.68 3.40 -0.38 

Deyang City  0.98 1.60 -0.60 521029.65 -1305078.33 1826491.94 8.41 -1.20 

Zhong County  0.65 0.05 0.05 1189.79 -14754.97 28587.19 0.31 -0.23 

Chengdu City  0.98 2.23 -4.09 5825152.99 -7029958.58 14215679.4 54.76 0.23 

Liangping District  0.78 0.07 -0.02 48321.09 -42760.70 65868.64 0.79 -0.03 

Yongchuan District  0.94 -0.54 -0.04 168479.96 -289100.67 706555.38 2.14 -0.17 

Jiangbei District  0.93 0.35 -0.20 -207030.92 289086.83 -592899.66 1.95 0.39 

Jiangjin District  0.96 -0.16 -2.22 345849.18 -745976.13 1611605.93 7.06 -1.17 

Shapingba District  0.78 0.27 -0.01 2697.49 -272725.50 687317.89 4.31 0.49 

Luzhou City  0.95 -0.39 -0.49 242844.45 -495257.48 844706.90 10.18 -0.40 

Fuling District  0.91 -0.22 -0.27 78477.52 -366964.45 470569.38 1.62 -0.17 

Yuzhong District  0.95 0.02 -0.40 -888056.73 5997.16 -524552.18 0.31 0.47 

Yubei District  0.86 0.42 -0.26 15710.96 -448377.21 414577.31 23.32 0.38 

Tongnan District  0.94 -0.02 -0.01 -5468.43 -27623.68 89551.21 0.57 -0.12 

Bishan District  0.95 -0.26 -0.01 25841.49 -357253.69 348128.99 0.89 -0.07 

Meishan City  0.95 -0.74 -0.43 19996.48 -216775.17 487631.65 8.14 -0.05 

Qijiang District  0.95 -0.15 -1.56 2111554.87 -1363500.12 2561157.37 9.44 0.13 

Mianyang City  0.93 -0.95 -1.64 807199.83 -1346504.84 2593245.92 22.69 -0.34 

Zigong City  0.96 -0.51 -0.44 98582.43 -248615.39 332789.20 2.89 -0.08 

Rongchang District  0.86 -0.03 -0.08 47879.81 -96579.38 163688.50 0.87 -0.26 

Ziyang City  0.97 -0.13 0.15 110121.74 -180025.43 219206.29 0.75 -0.03 

Dazhou City  0.97 -0.73 -0.06 63641.63 -714134.73 685085.82 19.64 -0.33 

Suining City  0.94 0.22 0.14 227676.77 -465429.79 520386.01 2.85 -0.19 

Tongliang District  0.96 -0.11 -0.01 33314.70 -111587.78 147611.02 0.47 -0.09 

Changshou District  0.85 -0.06 -0.20 154584.77 -355029.77 530443.78 1.59 0.18 

Ya'an City  0.96 0.08 0.23 150150.64 -773434.94 630130.21 3.29 -0.53 

Qianjiang District 0.83 -0.04 0.00 7239.64 -63401.52 72300.91 0.86 -0.21 

 

3.2.2 Analysis of Carbon Emission Drivers 

In studies reporting the results of experimental manipulations or interventions, clarify whether the analysis was by 

intent-ta-treat. That is, were all participants assigned to conditions included in the data analysis regardless of 

whether they actually received the intervention, or were only participants who completed the intervention 

satisfactorily included? Give a rationale for the choice. 

The analysis reveals significant regional variations in the factors influencing carbon emissions within the Chengdu-

Chongqing urban agglomeration. Each factor demonstrates unique impacts across different regions, reflecting the 

diverse economic, industrial, and energy characteristics of the area. 

Energy structure (s) optimization generally exhibits a negative impact on carbon emissions, indicating that an 

increased share of clean energy effectively reduces emissions. For example, in Chengdu and Deyang, the 

coefficients for energy structure are 2.23 and 1.60, respectively, highlighting the significant role of clean energy 

adoption in these regions. However, in some districts, such as Jiulongpo and Yibin, the coefficients are relatively 

small or even slightly positive, suggesting that the promotion of clean energy in these areas is insufficient. Overall, 

energy structure optimization is an important driver of emission reductions, but its effectiveness varies across 

regions. 
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Energy consumption intensity (i) has a predominantly negative impact on carbon emissions, reflecting the 

significant role of energy efficiency improvements in emission reductions. For instance, in Chengdu, the 

coefficient is -4.09, indicating that technological advancements and energy-saving measures have effectively 

reduced emissions. However, in certain regions, such as Yibin, the coefficient is slightly positive (0.16), suggesting 

that energy efficiency improvements have not yet been fully realized. These results highlight the need to further 

enhance energy efficiency, particularly in regions with high energy consumption intensity. 

The tertiary industry scale effect (α) has a mixed impact on carbon emissions, with significant regional variations. 

In Chengdu, the coefficient is 5825152.99, indicating that the expansion of the tertiary industry contributes to 

emission reductions. In contrast, in Jiulongpo, the coefficient is -1550153.47, suggesting that the tertiary industry 

expansion has led to increased emissions, possibly due to insufficient green transformation. These findings 

underscore the dual role of the tertiary industry in carbon emissions and the need to promote its green development. 

Industrial upgrading (β) consistently exhibits a negative impact on carbon emissions, demonstrating its critical role 

in emission reductions. For example, in Chengdu and Deyang, the coefficients are -7029958.58 and -1305078.33, 

respectively, indicating that the transition to high-tech and service-oriented industries has significantly reduced 

emissions. However, in some regions, such as Jiulongpo, the impact of industrial upgrading is less pronounced, 

highlighting the need to further optimize industrial structures in these areas. 

The secondary industry scale effect (γ) is a major positive driver of carbon emissions, reflecting the high energy 

consumption associated with industrial activities. For instance, in Chengdu, the coefficient is 14215679.40, 

indicating that the expansion of the secondary industry is a significant contributor to emissions. These results 

emphasize the importance of promoting green industrial transformation to reduce emissions from this sector. 

Economic growth (g) is the largest positive driver of carbon emissions across all regions, with coefficients ranging 

from 5.39 in Jiulongpo to 54.76 in Chengdu. These results highlight the strong coupling between economic 

development and carbon emissions in the Chengdu-Chongqing urban agglomeration. Decoupling economic 

growth from carbon emissions remains a critical challenge for the region. 

The impact of population size (p) on carbon emissions is relatively small and varies across regions. For example, 

in Chengdu, the coefficient is 0.23, indicating a modest positive impact, while in Deyang, the coefficient is -1.20, 

suggesting a slight negative impact. These findings suggest that population growth has a limited direct impact on 

emissions, but its influence may increase with urbanization. 

3.2.3 Comparison with Existing Studies 

The findings of this study are consistent with those of Wang Juntao (2023) in terms of the positive impact of 

economic growth and the negative impact of energy consumption intensity on carbon emissions. However, this 

study diverges in the analysis of population size, where most counties exhibit a negative or negligible impact, 

while Wang’s study found a positive impact at the provincial level. This discrepancy may be attributed to 

differences in spatial scales and population aggregation, as regions with higher population densities (e.g., Chengdu) 

tend to have a more pronounced impact on emissions. 

3.3 Integrated Discussion of Findings 

The results of the LMDI decomposition analysis and the STIRPAT model provide complementary insights into 

the driving factors of carbon emissions in the Chengdu-Chongqing urban agglomeration. By integrating the 

findings from both methods, several key patterns and implications emerge. 

Energy structure optimization and energy consumption intensity reduction are highlighted as critical drivers of 

emission reductions. The LMDI results show that energy structure consistently contributes negatively to emissions, 

with an average contribution rate of -36%, while energy consumption intensity also exhibits a significant negative 

impact, particularly in recent years. Similarly, the STIRPAT model confirms that clean energy adoption and 

improvements in energy efficiency are effective in reducing emissions, as evidenced by the negative coefficients 

for energy structure and energy intensity in most regions. However, regional disparities, such as in Yibin and 

Jiulongpo, suggest that further efforts are needed to enhance clean energy adoption and energy efficiency in these 

areas. 

Industrial and economic factors play contrasting roles in carbon emissions. The expansion of the secondary 

industry and economic growth are identified as the primary drivers of emission increases in the LMDI analysis, 

with average contribution rates of 40% and 135%, respectively. These findings are corroborated by the STIRPAT 

model, where the coefficients for secondary industry scale and economic growth are predominantly positive and 

significant. For example, in Chengdu and Mianyang, the secondary industry scale effect is a major contributor to 
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emissions, reflecting the energy-intensive nature of industrial activities in these regions. This underscores the 

urgent need for green industrial transformation to decouple industrial growth from carbon emissions. 

The tertiary industry demonstrates a dual role in carbon emissions, with mixed impacts across regions. The LMDI 

results indicate a modest positive contribution to emissions, while the STIRPAT model reveals significant regional 

variations. In regions such as Chengdu, the tertiary industry contributes to emission reductions due to its higher 

degree of green transformation, whereas in other areas, such as Jiulongpo, tertiary industry expansion has led to 

increased emissions. These findings highlight the need to promote green development of the tertiary industry 

across the region. 

Industrial upgrading consistently contributes to emission reductions, as shown in both analyses. The LMDI results 

indicate an average contribution rate of -51%, while the STIRPAT model further confirms the importance of 

transitioning to high-tech and service-oriented industries. For instance, in Chengdu and Deyang, industrial 

upgrading has significantly reduced emissions. However, its limited impact in some regions, such as Jiulongpo, 

suggests that further efforts are needed to optimize industrial structures. 

Population scale has a relatively small impact on carbon emissions. The LMDI analysis shows an average 

contribution rate of 2%, while the STIRPAT model indicates coefficients close to zero or slightly negative in most 

regions. However, in high-density areas such as Chengdu, population growth and urbanization amplify emissions, 

highlighting the importance of optimizing urbanization patterns and promoting low-carbon urban development. 

Significant regional disparities in carbon emission drivers are evident in both analyses. For example, Chengdu and 

Mianyang exhibit strong positive contributions from economic growth and secondary industry expansion, while 

regions such as Jiulongpo and Yibin show weaker impacts from energy structure optimization and industrial 

upgrading. These differences emphasize the need for tailored low-carbon development strategies that consider 

regional characteristics and priorities. 

In summary, the integrated findings underscore the importance of energy structure optimization, energy efficiency 

improvements, industrial upgrading, and green transformation of the tertiary industry in reducing carbon emissions. 

At the same time, the challenges posed by economic growth, secondary industry expansion, and urbanization 

require targeted interventions to achieve sustainable development in the Chengdu-Chongqing urban agglomeration. 

4. Discussion 

4.1 Summary 

This study examines the driving factors of carbon emissions in the Chengdu-Chongqing urban agglomeration using 

the LMDI decomposition method and the STIRPAT model. The results reveal that energy structure optimization 

and energy consumption intensity reduction are the most significant drivers of emission reductions, with clean 

energy adoption and energy efficiency improvements playing a critical role. In contrast, economic growth and 

secondary industry expansion are the primary contributors to emission increases, reflecting the energy-intensive 

nature of industrial activities and the strong coupling between economic development and carbon emissions. The 

tertiary industry shows a dual role, reducing emissions in regions with advanced green transformation, such as 

Chengdu, but increasing emissions in areas dominated by traditional service sectors, such as Jiulongpo. Regional 

disparities in the effectiveness of these factors highlight the need for tailored low-carbon strategies. 

To achieve low-carbon development in the Chengdu-Chongqing urban agglomeration, policymakers should focus 

on accelerating clean energy adoption and improving energy efficiency, particularly in regions like Yibin and 

Jiulongpo where progress is limited. Promoting green industrial transformation, especially in industrial hubs such 

as Chengdu and Mianyang, is essential to decouple economic growth and secondary industry expansion from 

carbon emissions. Efforts should also target the green development of the tertiary industry by encouraging low-

carbon practices in traditional service sectors. Additionally, optimizing urbanization patterns through compact city 

planning and improved public transportation can help mitigate emissions in high-density areas. Tailored strategies 

and strengthened regional coordination are crucial to addressing disparities and ensuring balanced low-carbon 

development across the region. 

4.2 Contributions and Limitations 

This study contributes to the understanding of carbon emissions and low-carbon development by integrating the 

LMDI decomposition method and the STIRPAT model, offering a comprehensive analysis of the driving factors 

of carbon emissions from both additive and multiplicative perspectives. It provides detailed, region-specific 

insights into the Chengdu-Chongqing urban agglomeration, highlighting significant regional heterogeneity and 

offering practical guidance for policymakers to develop targeted low-carbon strategies. 
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However, the study has several limitations. It relies on statistical yearbooks and carbon accounting data, which 

may lack precision and timeliness, and provides a static analysis, without capturing temporal changes in emission 

drivers. Future research could address these gaps by incorporating real-time data, dynamic models, and sector-

specific analyses, while also exploring the role of individual behaviors and social factors in carbon emissions. 
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