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Abstract 

This study investigates the adaptive containment control problem for a class of nonlinear multi-agent systems with 

input quantization and sensor faults. A state observer and a radial basis function neural network are respectively 

employed to estimate unmeasurable states and approximate unknown nonlinear functions. An absolute cubic 

Lyapunov function is designed to compensate for the influence of sensor faults on the systems. A filter is 

introduced to reduce computational complexity. Adaptive laws are developed to update the estimates of uncertain 

dynamic parameters, fault coefficients, and the filter-error compensation term. A distributed adaptive control 

scheme is proposed to ensure that all followers converge to the convex hull formed by the leaders. The stability of 

the closed-loop system is strictly proved based on stability theory, and the effectiveness of the proposed control 

method is verified by numerical simulation.  

Keywords: containment control, fault-tolerant control, input quantization, multi-agent systems 

1. Introduction 

As a core technology in distributed intelligent control, multi-agent systems (MASs) are dedicated to achieving 

global optimization objectives for complex tasks through local interactions and collaborative behaviors among 

multiple autonomous agents. Characterized by autonomy, robustness, and dynamic adaptability, MASs 

demonstrate significant advantages in applications such as UAV formations, traffic control, and swarm robotic 

coordination [1-3]. 

Containment control is the core branch of multi-agent system cooperative control, which aims to make the follower 

agents converge to the convex hull region composed of the leaders through the motion guidance of multiple leaders.  

With the rapid development of industrial automation and intelligent clustering technology, containment control 

has shown key value in dynamic target rounding, disaster relief area blocking, distributed sensor network coverage 

and other scenarios. In recent years, research on containment control has made remarkable progress in both theory 

and application [4-9]. In [10], an adaptive fuzzy tracking control problem for nonlinear systems with unmeasurable 

states and external disturbances was investigated. In [11], the authors studied multi-network unknown nonlinear 

mechanical systems and designed a distributed adaptive event-triggered sliding mode control scheme. A fixed-

time feedback control strategy with integrated event triggering mechanism to solve the security binary inclusion 

control problem was proposed in [12]. 

In distributed control of MASs, real-time data transmission and processing underpin inter-agent information 

exchange and cooperative decision-making. However, constrained communication bandwidth, limited 

computational resources, and low-power design requirements impose urgent demands for efficient representation 

of input signals. As a core solution, input quantization maps continuously valued input signals into discrete values 

with finite bit-width, significantly reducing communication loads and computational complexity. Yet, this process 

inevitably introduces quantization errors, posing challenges to cooperative accuracy, stability, and convergence 

performance. Consequently, scholars have achieved notable advancements in addressing these issues through 

quantizer design, stability assurance mechanisms, and intelligent compensation strategies [13-16]. In [17], for a 

class of non-strict feedback high-order nonlinear systems with input quantization, an adaptive fuzzy predefined-

time tracking control scheme is proposed. In [18], the problem of adaptive stabilization is explored for stochastic 

systems with input delay, where both the states and the input are quantized. For a class of strict-feedback nonlinear 
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systems featuring input quantization, input delay, and prescribed performance, an adaptive optimal control method 

grounded in the command filter technique is put forward in [19]. 

In modern complex engineering systems such as industrial control systems, aerospace, and autonomous driving, 

sensors serve as critical components for system state perception, whose reliability directly determines system 

safety and operational performance. However, factors including harsh working environments, component aging, 

or sudden disturbances may cause sensor faults such as deviations, drifts, jamming, or complete failures, leading 

to distorted measurement information, which consequently triggers control strategy failures or even system 

breakdowns. Therefore, the development of advanced fault-tolerant control methods capable of handling sensor 

failures has become a pivotal technical challenge to ensure reliable system operation and has garnered significant 

research achievements [20-23]. In [24], the authors proposed an adaptive finite-time fault-tolerant observer-based 

quantized controller for nonlinear state-delayed interconnected switched multi-input multi-output systems. For 

vehicle platoons addressing sensor faults and output quantization, a fault-tolerant control scheme was established 

in [25]. In [26], a decentralized adaptive fault-tolerant control scheme for interconnected nonlinear systems with 

unknown multiplicative/time-varying additive sensor faults and uncertain cross-subsystem interactions was 

proposed. In [27], the problem of event-triggered fault-tolerant tracking control was studied for multi-agent 

systems with sensor/actuator faults. 

Based on the above analysis, this paper investigates the adaptive containment control problem for nonlinear multi-

agent systems with input quantization and sensor faults. The main contributions are summarized as follows: 

1) For nonlinear multi-agent systems subject to dual effects of sensor faults and input quantization, an 

adaptive containment control scheme is proposed. By designing a distributed fuzzy adaptive control strategy, 

it ensures that the outputs of all followers converge to the convex hull formed by multiple leaders. 

2) Combining a state observer with fuzzy logic systems, unmeasurable states are estimated, and uncertain 

nonlinear dynamics of the system are approximated. By constructing an absolute cubic Lyapunov function, 

the impact of sensor faults on control performance is effectively compensated. Additionally, a filter is 

introduced to reduce computational complexity in the recursive design of the backstepping approach. 

3) Multi-parameter adaptive laws are proposed to dynamically adjust estimates of uncertain dynamic 

parameters, fault coefficients, and filter error compensation terms. Based on stability theory, the practical 

fixed-time stability of the closed-loop system is rigorously proven, and the effectiveness of the proposed 

scheme is validated through numerical simulations. 

The subsequent sections of this paper are organized as below. Section 2 introduces the preliminaries and the 

dynamic model of the systems. An observer is designed and an adaptive quantized fault-tolerant control scheme 

is proposed in Section 3. Section 4 conducts a stability analysis. A simulation example is given in Section 5. Lastly, 

Section 6 summarizes the conclusions. 

2. Preliminaries and Problem Statements 

This section introduces graph theory, radial basis function neural networks (RBFNNs), key lemmas, and system 

dynamics. 

2.1 Graph Theory 

Let  be a directed graph, describing the interaction relationships among multiple agents. Here 

 denotes the node set, where followers are labeled as , and leaders are labeled 

as .  as the edge set. The weighted adjacency matrix is defined as

. If , then , indicating that agent  can receive information from agent 

, otherwise, , with the assumption that . The degree matrix is defined as , 

where . The Laplacian matrix of the directed graph is given by , 

where , . 

Define the neighbor set of agent  as , and assume that  for , while 
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 for . Under this configuration, the Laplacian matrix  can be partitioned as 

 

where , . 

Form the definition of Laplacian matrix , one has , where ,  

and . Let . Then,  

. Thus,  

                   (1) 

Assumption 2.1: The leader signals , , and all their derivatives are continuous and 

bounded. 

Assumption 2.2: For every follower, there exists at least one directed path from a leader to that follower. 

2.2 RBFNN 

The radial basis function neural network (RBFNN) is used to approximate a continuous function  defined 

on a compact set . 

Let  be a continuous function on the compact set . For an approximation error satisfying 

, where  is a constant, we have 

  

where  is the input vector of the RBFNN,  is the basis function vector, and 

denotes the number of nodes in the RBFNN. The ideal weight vector  is defined as 

  

where represents the weight vector. 

The basis function  is typically chosen as a Gaussian function: 
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where  and ,  the center and width of the Gaussian function, respectively. 

Assumption 2.2:  is bounded, i.e., , where  is a constant. 

2.3 Needed Lemmas 

Lemma 2.1[29]: For any  and , one has 

  

where . 

Lemma 2.2[30]: For , ,  and  satisfying , one has 

  

Lemma 2.3[31]: Let  be continuous and satisfy . If , where  and  are 

positive constants, one has 

  

2.4 System Description 

Consider a multi-agent system with  leaders and  followers, where the dynamic behavior of the followers 

is described as: 

                (2) 

where  denotes the system state, and  represents the system output, where only  is 

directly measurable. The unknown smooth nonlinear function  is defined with  

and . The external disturbance  is unknown but bounded, satisfying , where 

 is a constant. The control input  is converted into a quantized input , with the quantization 

error constrained by a sector-bounded condition: 

                        (3) 

where  and  are unknown constants. 

Regarding the system output , when a sensor failure occurs at time , the measured output  is 
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                            (4) 

where  is an unknown fault parameter. Let , , in which  and  is the estimation 

of , which will be updated by an adaptive law. 

Assumption 2.3: For the leader signal , , , are continuous and bounded. 

3. State Observer Design 

A state observer is constructed as: 

        

      (5) 

where , , is the estimate of , and  is a design parameter. 

Define the observer error as , we have 

                   (6) 
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Let 

                      (7) 

             (8) 
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The Lyapunov function  is defined as 

         (9) 
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         (10) 

From (4) and Young’s inequality, one has 

         (11) 

and 

            (12) 

where  is a constant and . 

For the unknown nonlinear term  in (3.8), an RBFNN  is applied such that , 

where  is the approximation error with . Based on the fact that , we have   

  

where . Thus, one has 

        (13) 
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                   (14) 
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where . 

Define the Lyapunov function  as follows 

                 (16) 

where  is positive constant. 

From (15) and (16), one has 

           (17) 

Using Young's inequality, one has 
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and 

                  (24) 

where  and  are positive constants. 

Based on Lemma 2.2, we have 
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From (16)-(25), one has 

          (26) 

where . 

Step q : From (2) and (8), one has 

                

 (27) 

Using the following second-order differentiator [32] to approximate  

   (28) 

where 

          

 (29) 

            (30) 

 denotes the sign function, , ,  are design parameters, and differentiator states 

 and  are the estimations of  and , respectively.  

Therefore, the derivative of  is expressed as 

                                (31) 

2 2

2

1 1
ˆ ˆ( ) , ( ) 0,

ˆ
1

ˆ0, ( ) 0,

F F

i i i i i i

i i

i

F

i i i

i

y y

y

   
 



 



− − 


= 
 − 


1i i

2 2 2 3 3 3| | 1 1
ˆ ˆsgn( ) ( ) | | | | | | | | .

3 3

i
i i i i i i i i i i i i i i

i


             


= = −  −  − +

(0) 2 (1) 2 2 2 31
1 1 1 2 1 1

1 1

1 ˆ( | | ),
2 3

N
i i

i i i i i i i i i

i i

V a p e e
 

   
=

 − + − + + − ‖‖

(1) (0) 2 2 2 3

1 1 1 1 1

1

1 1 1

2 2 2 3

N
i

i i i ij j i i i i

j

r a r


  
=

 =  + + + + +

( 2, , 1)q n=  −

, 1

, 1 , 1( ) .

iq iq i q

i q iq iq iq iq i q

e

e g r

 

  

−

+ −

= −

= + + + −

, 1i q −

2

2

,

1
[sat(sgn( ( , )) | ( , ) | ) sat(sgn( ) | | )],

iq iq

p

p

iq iq iq iq iq iq iq iq iq

h

H h H h  −




 +


=

= − − −

2sgn( ) | |
( , ) ,

2

p

iq iq

iq iq iq iq iqH h h
p

 

−

− = − +
−

,| | ,
sat( )

sgn( ),| | ,

x x P
x

P x x P


= 



sgn( ) 0 0P  (0,1)p

iqh iq , 1i q − , 1i q −

, 1i q −

, 1 ,i q iq iq − = +



ijas.ideasspread.org   International Journal of Applied Science Vol. 8, No. 2; 2025 

 78 Published by IDEAS SPREAD 

 

where  denotes the estimated error of the differentiator. To address this error, a compensated filtering error 

mechanism is formulated 

                               (32) 

where  represents the approximated filtering error, and  corresponds to the residual compensation error. 

The Lyapunov function candidate  is selected as: 

         (33) 

where  and  are positive constants. 

Form (27)-(33), we have  

 

    (34) 
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                      (36) 

Similar to (21),  is approximated by a RBFNN , i.e., , where  is the estimation 

error satisfying  with . One has 
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 (38) 

where  is a positive constant. 

The adaptive laws  and  are designed as 

                      (39) 

and 
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where  and  are positive constants. 

Taking (35)-(40) into (34), we have 
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Step n: From (2) and (8), we have 
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The Lyapunov function  is constructed as 
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                          (48) 

where , , , and  are positive constants. 

Integrating (3) and (46), one has 
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satisfy  

            

              (53) 
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              (57) 

2) The containment error is bounded. 

Proof: From (9), (16), (33), and (43), we have 
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where , , . 

From (62) and Lemma 2.3, one has 

               (63) 

Thus, 

                              (64) 

1) From (58) and (64), one has 

 
thus, 

 
Similarly, (54)-(57) hold. 

2) Defining the containment error as , one has 

                    (65) 

By (1) and Assumption 2.1, the containment error is bounded. 

Proof completed. 

6. Numerical Simulation 

Consider a nonlinear multi-agent system comprising four followers and two leaders, with the connectivity graph 

depicted in Figure 1. The dynamics of the followers are described by: 

 

And the two leader signals are respectively set as , . Under sensor faults, the 

system output model is defined as: 

 

with fault occurrence times , , , and . The input signal is quantized using 

the hysteresis quantizer model [33], with the parameter configuration being , . 
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For each unknown function, the RBFNN comprises 5 nodes. The centers of the Gaussian functions are uniformly 

selected within the interval [-2, 2], and their width is set to 2.The main parameters are selected as , , 

, , , , , , , , , , , 

, , , , , , , , , , , 

, , , , , . 

The simulation results are shown in Figures 2 to 4-9. Figure 2 illustrates the trajectories of the system outputs , 

, , and leader signals , . Figure 3 depicts the observer error , , which 

remains confined within a small neighborhood around zero, exhibiting only transient oscillations after fault 

occurrences. Figure 4 presents the control signals ,  and their quantization signals . The 

curves of adaptive laws ,  and  for ,  are shown in Figures 5-7, respectively. The 

results demonstrate that under the proposed adaptive control scheme, all followers converge into the convex hull 

formed by the leaders while ensuring boundedness of all closed-loop system signals. 

 

Figure 2. The curves of  and  

 
Figure 3. The curves of  
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Figure 4. The curves of  and  

 

Figure 5. The curves of  

 
Figure 6. The curves of  
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Figure 7. The curves of  

 

7. Conclusion 

This paper proposes an adaptive containment control scheme for nonlinear multi-agent systems coexisting with 

sensor faults and input quantization. By integrating a state observer, a RBFNN, and a second-order filter, the 

scheme achieves the estimation of unmeasurable states, the approximation of uncertain dynamics, and the 

reduction of computational complexity. An absolute cubic Lyapunov function is constructed, which is combined 

with a multi-parameter adaptive law design, to compensate for the interference of sensor faults on system 

performance and ensure that all followers converge to the convex hull formed by leaders within a fixed time. The 

practical fixed-time stability of the closed-loop system is rigorously proven through stability analysis, and 

numerical simulations further validate the effectiveness of the proposed approach.  
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