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Abstract 

This paper investigates a generalized class of Fibonacci polynomials by extending their recurrence structure to 

multivariate and multistage settings. Building on the classical univariate Fibonacci polynomial framework, we 

introduce new recurrence relations and explore the associated coefficient properties. The study establishes 

unimodality results for the constructed sequences, derives transformation matrix representations, and develops 

corresponding generating functions. These results not only enrich the algebraic understanding of Fibonacci-type 

sequences but also provide potential applications in combinatorial enumeration and related areas of discrete 

mathematics. Open problems are proposed to guide further research on asymptotic behavior and closed-form 

characterizations of generalized Fibonacci polynomials. 
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1. Introduction 

The Fibonacci sequence and its polynomial extensions have long been recognized as fundamental objects in 

number theory, combinatorics, and algebraic analysis. Their recurrence structures and combinatorial 

interpretations have inspired numerous generalizations, including order-k Fibonacci numbers, Pell-type sequences, 

and multivariate analogues. Such extensions not only broaden the theoretical framework of recurrence relations 

but also uncover new algebraic and combinatorial properties with potential applications in areas such as coding 

theory, cryptography, and algorithmic design. 

Traditional Fibonacci polynomials satisfy well-known recurrence relations that have been widely studied for their 

combinatorial interpretations and generating functions. However, most existing research focuses on univariate 

extensions, leaving the multivariate and multistage generalizations relatively unexplored. Motivated by this gap, 

the present work investigates new classes of generalized Fibonacci polynomials obtained by incorporating multiple 

variables and higher-order recurrence terms. 

The primary contributions of this paper are threefold. First, we establish new recurrence structures for generalized 

Fibonacci polynomials and study the unimodality of the associated coefficient sequences. Second, we develop a 

matrix formulation that provides a more transparent algebraic perspective on their recursive behavior. Third, we 

derive generating functions for these polynomials and highlight several unresolved problems regarding their 

closed-form expressions and asymptotic growth. 

By extending the classical framework to a more general setting, this study contributes to the ongoing exploration 

of Fibonacci-type sequences and provides a foundation for future investigations into their combinatorial and 

analytic properties. 

The well-known Fibonacci polynomials satisfy the following recurrence relation 

2 1( ) ( ) ( )n n nF x F x xF x+ += +
 

Or in the relation 

2 1( ) ( ) ( )n n nF x xF x F x+ += +
 

Some promotions are related to the frequency of intervals, like [3] 

, 1, ,( ) ( ) ( )n m m n m m n mF x F x xF x+ + −= +
 

To define a peculiar Fibonacci function sequence from another perspective [4] by defining k 
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sequences of the generalized order- k  F P−  numbers as shown: for 0, 0n m   and 1 i k   

1 22i i i i

n n n n ku mu u u− − −= + +
 

with initial conditions for 1 0k n−   : 

1    if   1

0    otherwise

i

n

i n
u

= −
= 
  

Based on the limitations of univariate interval frequency extension, multivariate y  and mul- tistage 

summation terms are introduced to construct a more general polynomial recurrence framework. 

We can further promote this foundation by adding several items and introducing a new vari- able 

2

, 1, , ,

1

( , ) ( , ) ( , ) ( , )
m

n m m n m m n i m n m

i

G x y G x y G x y G x y
−

+ + − +

=

= + +  

Its initial value satisfies 

0, ,( , ) 0, ( , ) 1, 1, 2, , 1m i mG x y G x y i m= = = −
 

We define the coefficient values for terms with different degrees 

Which is  

1 1

2

,

0 0

( , ) ( , , )

n m n

m
i j

n m m

j i

G x y S n i j x y

− + −   
   
   

= =

=  
 

All values beyond the defined range are assigned a value of 0, resulting in the following relational expression. 

i  is associated with the power of x , corresponding to the combinatorial counting dimension of the x -

terms in the polynomial; j  is associated with the power of y  , constrained by the parity of 1n m− + ,  

reflecting the order limit of multivariable interaction 

1

2

( , , ) ( 1, , ) ( , , 1) ( , 1, )
m

m m m m

i

S n m k l S n m k l S n m i k l S n k l
−

=

+ = + − + + − − + −
 

Here are the first few polynomials when , 3.y x m= =  

0,3 1,3 2,3 3,3 4,3( ) 0, ( ) 1, ( ) 1, ( ) 1, ( ) 3 1G x G x G x G x x G x x= = = = + = +
 

2 2 3 2

5,3 6,3 7,3( ) 5 1, ( ) 5 7 1, ( ) 13 9 1,G x x x G x x x G x x x x= + + = + + = + + +
 

3 2 4 3 2

8,3 9,3( ) 7 25 11 1, ( ) 25 41 13 1G x x x x G x x x x x= + + + = + + + +
 

The coefficients of x  with different powers are defined as follows 

1

2

,

0

( ) ( , )

n m

i

n m m

j

G x T n i x

− + 
 
 

=

= 
 

 

Table1. ( , )mT n i write in the form of a list 

T3(n, i) i  = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 

n = 0 0        

n = 1 1        
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n = 2 1        

n = 3 1 1       

n = 4 1 3       

n = 5 1 5 1      

n = 6 1 7 5      

n = 7 1 9 13 1     

n = 8 1 11 25 7     

n = 9 1 13 41 25 1    

n = 10 1 15 61 63 9    

n = 11 1 17 85 129 41 1   

n = 12 1 19 113 231 129 11   

n = 13 1 21 145 377 321 61 1  

n = 14 1 23 181 575 681 231 13  

n = 15 1 25 221 883 1289 681 85 1 

n = 16 1 27 265 1209 2241 1683 377 15 

 

2. The Study on the Unimodality of Sequences, Transformation Matrices and Generating Functions 

Theorem 1. For any fixed n , ( , )mT n i  is unimodal. The value of i corresponding to the maxi- mum 

value in each row increases as n  increases, and if each jump is only a jump of 1. 

Proof. Start with the proof of two lemmas. Let in  denote the threshold index where the in- equality 

switches, and 
ik  be an auxiliary index for comparison. 

Lemma 2. If the conditions are met 

( , ) ( , 1),m i m i i iT k i T k i k n + 
 

( , ) ( , 1)m i m iT n i T n i +
 

For any i ik n , there exists 

( , ) ( , 1)m i m iT k i T k i +
 

Proof. We use mathematical induction on i . First, define the base case: for 3i = , verify the condition 

with initial 1k , 1n  satisfying the lemma 3. Solve it using mathematical induction for i . We can know 

from the induction conditions that 

1 1 1 1( , 1) ( , ),m i m i i iT k i T k i k n− − − −−  
 

1 1 1 1( , 1) ( , ),m i m i i iT k i T k i k n− − − −−  
 

For i , we inherit the structure by shifting indices, reusing the inequality pattern. 

1 1( 1, ) ( 1, 1)m i m iT n i T n i− −+  + +
 

2 2

1( , 1) ( , ),
t m t m

m m i

j t j t

T j i T j i t n
+ − + −

−

= =

−   
 

Based on this, we can conclude that there exists in  that satisfies the condition 

1( 1, ) ( 1, 1)m i m iT n i T n i−+  + +  

If
11 2i in n m−−  + − , from the inductive hypothesis, we can draw a conclusion 
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1 1

2 2

( , 1) ( , ), , 1 2
t t

m m i n i

j t m j t m

T j i T j i t n n t n m− −

= − + = − +

−   −   + − 
 

So that 

( , ) ( , 1),m i m i i iT k i T k i k n + 
□  

Using the threshold behavior of in and the inequality switching at 
ik  established in lemma 2, we now derive 

lemma 3 to further constrain the growth of in  across indices. This step is critical for proving the index 

monotonicity of the unimodality.  Besides,  from the proof of the lemma 2, we know that 
1i in n+  . We can 

also obtain the following proposition. 

Lemma 3. 

12i in n ++ 
 

Proof. From the proof of Lemma 2, Lemma 3 is obviously. 

By Lemma 3 ,  
12i in n ++   ensures that the maximum position i  strictly increases with n .  Combining 

Lemma 2 and Lemma 3, we complete the proof of Theorem 1. 

Theorem 4. For any integer k m , every line of the form n i k= +  is unimodal. 

Proof. Rewrite the list and the formula as follows: 

( , ) ( 1, )m mS n i T n i= +
 

The recursive relation expression is 

2

( 1, 1) ( , 1) ( , )
n

m m m

j n m

S n i S n i S j i
= − +

+ + = + + 
 

Then, it can be proven through a proof similar to that of Theorem 1 

To gain a deeper understanding of this sequence [2], we represent its recurrence algebraically 

via a matrix 
mH .  The matrix encodes the coefficients of , ( , )n mG x y  in its powers 

n

mH  ,  where: 

1

1

1

1

m

y y x

H

 
 
 
 =
 
 
 
   

Through the form of a matrix, the recursive relationship can be described more specifically. 

The following expressions are expressed for high-order iterations. 

( )1 2

n

m mH I I I=
 

1, ,

, 1,

2, 1,

( , ) ( , )

( , ) ( , )
,

( , ) ( , )

n m n m

n m n mn

m m

n m m n m m

G x y xG x y

G x y xG x y
H I

G x y xG x y

+

−

− + − +

   
   
   = =
   
      
     
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, ,

1

1

, 1,

1

, 2 1,

2 2

( , ) ( , )

( , ) ( , )
, 2 1

( , ) ( , )

n

i m n m k m

i n m k

n

i m n m k m

i n m kk

n m

i m n m k m

i n m k

y G x y xG x y

y G x y xG x y
I k m

y G x y xG x y

− +

= − + +

−

− + −

= − +

− +

− + +

= − + +

 
+ 

 
 

+ 
=   −
 
 
 
 + 
 






 

Here, , ( , )n mG x y  represents a polynomial that satisfies the conditions Equation 1 with the initial condition 

1, ,1, 0, 0m i mG G i= = 
 

This matrix representation deepens our understanding by translating combinatorial recurrence into linear algebra, 

a classic technique in enumerative combinatorics. 

Corollary 5. [1] Arbitrarily given , 1s t m −  

1, 1, 1, , 2,( , ) ( , ) ( , ) ( , ) ( , )s t m s m t m s m t m mG x y G x y G x y J xG x y G x y+ + + + − += + +
 

3

, 2 , ,

0 3

( , ) ( , ) ( , )
m s

i m s m j m t j m

j i s m j

J y G x y xG x y G x y
−

− + + −

= = − + +

 
= + 

 
   

To analyze oscillatory behavior or growth rates of , ( , )n mG x y ,  we extend to complex y i=  (where 
2 1i = − ). This transforms 

mH  into a complex matrix: 

( )1mH i i x=
 

Define 
2 1i = − , if y i= , we will get a matrix 

1

1

1

1

m

i i x

H

 
 
 
 =
 
 
 
   

( )1 2

n

m mH iB  = +
 

1, ,

, 1 ,

1

2, 2 1 ,

( , ) ( , )

( , ) ( , )
, , 2

( , ) ( , )

n m n m k m

n m n m k m

k

n m m n m k m

xG x y G x y

xG x y G x y
k m

xG x y G x y

 

+ − +

− − +

− + − + +

   
   
   = =  
   
      
     
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, , ,

3 3

1 1

, , 1,

2 3

1 1

, , 1,

2 2 2 5

0 ( , ) ( , ) ( , ) 0

0 ( , ) ( , ) ( , ) 0

0 ( , ) ( , ) ( , ) 0

n n

i m i m n m

i n m i n

n n

i m i m n m

i n m i n m

n m n m

i m i m n m m

i n m i n m

G x y G x y G x y

G x y G x y G x y
B

G x y G x y G x y

= − + = +

− −

−

= − + = − +

− + − +

− +

= − + = − +

 
 
 
 
 

=
 
 
 
 
 
 

 

 

 
 

To study the entire sequence , 0{ ( , )}i m iG x y 

=  collectively, we define the generating function: 

,

0

( , , ) ( , ) i

m i m

i

G x y t G x y t


=

=
 

Subsequently, the real and imaginary parts of the complex number can be discussed separately. Define the 

generating function 

,

0

( , , ) ( , ) i

m i m

i

G x y t G x y t


=

=
 

Theorem 6. 

( )
3

2

3
1 1

( , , )

1
1

m
m

m m
m

y t t
t m t

t t
G x y t

t t
t y xt

t

 −
− − − 

− − =
−

− − −
−  

Proof. Based on the Equation 1, obviously that 

2
1

, 1, , ,

1

( , ) ( , ) ( , ) ( , )
m

n m n m n m m n

n m m n m m n i m n m

i

G x y t tG x y t t G x y t G x y t
−

+ + − +

+ + − +

=

= + +
 

After summing up both sides and simplifying the fractions, the proof can be completed.  

Theorem 7 .  If function sequence satisfies 

2 1 1 2( ) ( ) ( ), ( ) , ( ) 1n n ng x g x xg x g x a g x+ += + = =
 

2

0

( ) ( , ) , 3

n

k

n a

k

g x s n k x n

 
 
 

=

=   

1

1
( , ) ( , )

1

k

a a

j

n j k
s n k B k j

k=

+ − − 
=  

− 
  

so that ( , )s n k  satisfies 

1 1
( , )

2 1
a

n k n j k
s n k a

k k

− − + − −   
= +   

− −     
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( ,1) (1 )
1

( , ) ( 1) ( 1)

a

j

a

k
B k a a

k
B k j a

j

  
= − +  

  


  = − −  
   

 

Table 2. Example 8. When 2a = ,  

B2(k,  j)  j  = 1  j = 2 j = 3 j = 4 j = 5 j = 6 j  = 7  j = 8 

k = 2 0 1       

k = 3 -1 3 -1      

k = 4 -2 6 -4 1     

k = 5 -3 10 -10 5 -1    

k = 6 -4 15 -20 15 -6 1   

k = 7 -5 21 -35 35 -21 7 -1  

k = 8 -6 28 -56 70 -56 28 -8 1 

 

It is triangle T  read by rows derived from the signed Pascal triangle and satisfying 
1T T −=  . 

Proof. 

2

0 1

1
( ) ( , )

1

n

k
k

n a

k j

n j k
g x B k j x

k

 
 
 

= =

+ − − 
=  

− 


 
The problems that we have not solved is that: 

Problem 9 . How to derive the general term formula of  

2

, 1, , ,

1

( , ) ( , ) ( , ) ( , )
m

n m m n m m n i m n m

i

G x y G x y G x y G x y
−

+ + − +

=

= + +
 

Problem 1 0 . For a very large m , are there any other statistical properties of generalized Fibonacci-type 

polynomials? 

5. Conclusion and Discussion 

In this work, we have extended the classical Fibonacci polynomial framework by introducing multivariate and 

multistage recurrence relations. The analysis established unimodality properties of the resulting coefficient 

sequences, provided a linear-algebraic perspective through matrix representations, and constructed generating 

functions to capture structural characteristics. These findings reflect the core objectives outlined in the introduction: 

to broaden the scope of Fibonacci polynomials, reveal new algebraic properties, and lay a foundation for further 

study of generalized recurrence systems. 

The results presented here also align with the broader motivation of enriching the theory of recurrence relations 

and their combinatorial interpretations. While our focus has been primarily theoretical, potential applications in 

combinatorial enumeration, discrete probability, and algorithmic design suggest promising directions for future 

exploration. The open problems posed—such as the derivation of closed-form expressions and the statistical 

analysis of large-scale polynomial coefficients—represent natural continuations of this work and may uncover 

deeper structural insights. 

Overall, this study contributes incremental but meaningful progress to the field of generalized Fibonacci-type 

polynomials. By providing both new results and open research avenues, it bridges the classical theory of recurrence 

relations with more modern, multivariate approaches. We hope that the framework developed here will inspire 

further investigations and applications across mathematics and its related disciplines. 
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