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Abstract 
Aiming at the privacy leakage risks of Graph Neural Networks (GNNs) in black-box scenarios, this paper proposes 
a Generation-Graph based Model Inversion Attack on GNN (GenG-MIA). By constructing a generative attack 
framework and integrating public knowledge distillation with structural optimization strategies, the proposed 
method effectively addresses challenges such as the high-dimensional sparsity of graph structure data, generative 
bias, and model collapse. GenG-MIA operates in two stages: first, during the public knowledge distillation stage, 
Wasserstein GAN is employed to train generators and discriminators on public datasets, enhancing the authenticity 
and diversity of generated graphs through a diversity loss term and introducing local/global discriminators to 
mitigate semantic gaps; second, in the structure revelation stage, potential vector projections are optimized to align 
with the feature space of the target model, thus recovering missing sensitive structures in training graphs. 
Experimental results show that GenG-MIA significantly outperforms existing methods in terms of attack accuracy 
and efficiency, enabling the efficient reconstruction of the topological structures of target training graphs and 
providing a new paradigm for privacy risk assessment of GNN models. This study further expands the application 
potential of generative attacks in complex graph data scenarios and offers theoretical references for privacy 
protection and model robustness design. 
Keywords: graph neural network, model inversion attack, generative adversarial network, graph structure data 
1. Introduction 
With the remarkable success of machine learning and deep learning in multiple domains, recent studies have shown 
that the training phase of machine models involves large-scale training data, which often contains sensitive privacy 
information. During training, models may intentionally or unintentionally "memorize" information about the 
training data. Attackers can leverage this memorized information to launch privacy attacks, potentially leaking 
sensitive information in the training data and threatening user privacy. This has triggered typical data 
confidentiality issues, leading to the consideration that data protection rights and obligations may apply to models 
themselves, which has raised profound concerns about model security. 
The model inversion attack was first proposed by (Fredrikson, 2014) for linear regression models, aiming to learn 
sensitive genomic information about individuals. Later, (Fredrikson, 2015) extended this concept to shallow neural 
networks to extract facial information. They treated model inversion as an optimization problem and solved it 
through gradient descent on images. This optimization-based approach aims to transform model inversion into a 
gradient-based optimization process without additional training of models for inversion tasks (Zhang, 2021; Liu, 
2020; Duddu, 2020), but it is typically applied only in white-box settings, where the learning objective is optimized 
iteratively. Additionally, some researchers (Wang, 2021) first introduced model inversion attacks into 
collaborative networks to address inference data privacy issues. Under different settings, they used the intermediate 
outputs of neural networks to reconstruct input images and evaluated the attack on different models and datasets. 
Although the method (Wang, 2021) proposed an approximate calculation of mutual information, for high-
dimensional data or complex models, approximation errors may affect attack effectiveness. Other researchers (Yin, 
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2023) argued that previous model inversion attacks only demonstrated the possibility of recovering input data with 
given gradients under very strict conditions and introduced GradeInversion (Yin, 2023), which customizes an 
optimization task to transform random noise into natural images to match large-batch gradients while regularizing 
image quality. However, this experiment only targeted low-resolution images, and for high-resolution inputs, 
information loss in intermediate features may be more significant, potentially causing a significant decline in the 
quality of reconstructed images. 
2. Design of the GenG-MIA Model 
This section proposes a Generation-Graph based Model Inversion Attack (GenG-MIA) on GNN. First, based on 
the acquisition of public graph datasets and posterior probabilities output by the target model, a graph inversion 
attack framework based on generative models is constructed. Public knowledge distillation is employed to train 
the generator, encouraging the authenticity and diversity of generated graph data. Second, the generator obtained 
from the previous step is utilized to recover missing sensitive structures in the training graph data, thereby 
significantly improving the accuracy and efficiency of the attack. On this basis, the framework can better simulate 
the behavior of the target model, enabling more effective attacks on GNN models under various application 
scenarios and attack conditions. Finally, experiments are conducted to validate the effectiveness and usability of 
the framework. By comparing with existing methods, the advantages of this study's approach in exposing privacy 
risks of GNN models and graph data using generative methods are highlighted. This chapter considers 
implementing generative graph inversion attacks under more realistic settings with minimal functional sets and 
further extends them to a general scenario attack framework. 
2.1 Assumptions of the Threat Model 
This paper assumes a threat model similar to existing model inversion attacks (Fredrikson, 2014). Specifically, in 
the black-box GNN scenario where the model only releases confidence values without disclosing model 
parameters, an adversary can leverage the adversarial generation capability of GANs to map knowledge such as 
confidence values, node attributes, and public datasets into topological structure generation priors, and reconstruct 
adjacency edges through adversarial training and iterative optimization. However, directly adapting generative 
model inversion attacks to graph structures leads to three key challenges: 
1) The adjacency vectors of graph structure data are high-dimensional, discrete, and sparse, causing the generator 
to produce a large number of adjacency edges during generation and triggering the curse of dimensionality. 
2) Prior knowledge easily introduces modeling bias. Briefly, public graph data, node features, and confidence 
values may contain irrelevant attributes (e.g., user height in social networks has little relevance to friend 
relationship prediction), creating a semantic gap with real graph structures and leading the generator to learn 
incorrect correlations. 
3) GAN training is prone to model collapse. In other words, during graph generation, on one hand, specific 
subgraphs in the generated graph are heavily repeated; on the other hand, a large number of semantically irrelevant 
edges are generated. 
2.2 Attacker’s Knowledge and Capabilities 
We focus on graph structure inversion under black-box settings. The attacker is assumed to have access to the 
target model and use inference techniques to recover the adjacency matrix of the target training graph. It is assumed 
that the attacker possesses all node labels and features. In addition to the target model and node labels, the attacker 
may also have other auxiliary knowledge, such as graph generative models, node attributes X , node IDs, or model 
output confidence values, to facilitate model inversion. The corresponding attack objective is to reconstruct the 
original training graph structure. We will discuss the impact of auxiliary knowledge and the number of node labels 
on attack performance in the following sections. 
2.3 Attacker’s Auxiliary Knowledge 
Auxiliary knowledge can be the relational structure containing only a small part of the target graph data, which 
provides preliminary connection patterns and association clues between nodes in the target graph data. It can also 
be graph data of the same type. Taking the Cora citation graph dataset as an example, any other citation-type graph 
dataset can be used as auxiliary knowledge. Since graph data of the same type share similarities in data generation 
mechanisms, semantic expressions, and structural features, attackers can mine common information and transfer 
it to the target dataset. In public graph datasets, the relationships between nodes and edges are relatively stable. 
Attackers can use generative adversarial network (GAN) models to learn the relationship patterns and connection 
probabilities between nodes and edges in public graph datasets through adversarial training between generators 
and discriminators, and then deduce information about the target dataset. GenG-MIA mainly uses public data 
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distillation, which transfers rich knowledge from public graph datasets, such as complex structural information 
and node feature distributions, to student models through a teacher-student model architecture and specific loss 
function designs (e.g., soft-label loss, feature-matching loss). This allows student models to integrate public data 
knowledge while learning target graph data features, enhancing their defense capabilities against attacks based on 
such auxiliary knowledge and improving model security and stability in complex attack environments. 
Additionally, auxiliary datasets can also be other types of graph datasets. Although the structural and semantic 
relevance between these different types of graph datasets and the target graph data is relatively weak, in the absence 
of better auxiliary knowledge, attackers can still attempt to obtain some general graph structure features or node 
attribute features from them, though the attack effect based on such data may be worse than that of homogeneous 
graph data. 
2.4 Attacker’s Graph Generative Model 
The graph generative model can be any graph generative model obtained from open-source platforms and deployed 
on the attacker’s own platform, or it can be a graph generative model written by the attacker. Different graph 
generative models mainly differ in the scale and quality of graph data generated according to different strategic 
directions. Graph generative models mainly include generators and discriminators, which work together to 
generate high-quality graph data. GenG-MIA primarily focuses on generative models that can produce realistic 
graph structures. 
2.5 The Framework of GenG-MIA  
As shown in Figure 1, the proposed generative graph model inversion attack framework for reconstructing the 
topological structure of graph data operates by first training generative and discriminative models on public 
datasets to foster the creation of graph data with authenticity and diversity. Next, leveraging the generator trained 
in the initial stage, the framework recovers missing sensitive regions in the target graph data through solving 
optimization problems. Finally, the target classifier is used to classify the generated data, further differentiating 
between generated and real data to enable reconstruction of data from the target network’s private training set. 
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Target Network
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local
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Figure 1. Flowchart of Generative Graph based Model Inversion Attack 

 
To realistically reconstruct the missing graph structural relationships in graph data, generators and discriminators 
trained on a public training set are used to realistically reconstruct the missing sensitive regions in the training 
graph data. After training, the goal is to find the latent vector z  that achieves the maximum likelihood under the 
target network while restricting it to the learned data flow manifold. However, without proper design, the generator 
may not allow the target network to easily distinguish between different latent vectors. For example, in an extreme 
case, if the graph data generated from all latent vectors converges to the same point in the feature space of the 
target network model, there is no hope of identifying which one is more likely to appear in the private training set 
of the target network. To address this issue, this chapter proposes a simple yet effective method, GenG-MIA. The 
reconstruction process of this method consists of two stages: (1) Public knowledge distillation, where the generator 
and discriminator are trained on a public dataset to encourage the authenticity and diversity of graph data generated 
by the generator. The public dataset can be of other types and has no class overlap with the private dataset. (2) 
Structure revelation, where the generator obtained in the first stage is utilized to recover the missing sensitive 
structure in the graph data by solving an optimization problem. 
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For the first stage, When auxiliary knowledge (such as part of the target graph structure or a version of the same-
type graph dataset) is available to the attacker, this chapter takes the auxiliary knowledge as an additional input to 
the generator. Additionally, when the additional knowledge is from the same-type graph dataset, this chapter 
employs two discriminators to identify whether the generated graph data is real or artificial. The global 
discriminator reconstructs the global graph structure to assess its overall coherence, while the local discriminator 
ensures the local consistency of the graph structure. uses the classic Wasserstein GAN (Arjosky,2017) training loss: 

min max ( , ) [ ( )] [ ( ( ))]wgan x zG D
L G D E D x E D G z= −  

When auxiliary knowledge (such as part of the target graph structure or a version of the same-type graph dataset) 
is available to the attacker, this chapter takes the auxiliary knowledge as an additional input to the generator. 
Additionally, when the additional knowledge is from the same-type graph dataset, this chapter employs two 
discriminators to identify whether the generated graph data is real or artificial. The global discriminator 
reconstructs the global graph structure to assess its overall coherence, while the local discriminator ensures the 
local consistency of the graph structure. 
Furthermore, this chapter introduces a diversity loss term that promotes the diversity of the synthetic graph data 
when ( )G ⋅ is projected into the feature space of the target network. Let F denote the feature extractor of the target 
network. Therefore, the diversity loss can be expressed as: 

min ( , ) ( , , ) ( ) ( )sim conf sparse advA
L A X L f A y R A L Aθα β γ δ

′
′ ′ ′ ′⋅ + ⋅ + ⋅ + ⋅  

. .s t   ( ; ),GA G X′ = Θ [0,1]ijA′ ∈ , ,i j∀  

Where the feature similarity loss 2|| ||T
sim FL A XX′= −  ;the model confidence loss 

2|| ( , ) ( , ) ||conf FL f X A f X Aθ θ′= −  ;the sparse term 2
,

1
sparse ij

i j
R A

N
′= ∑  and the adversarial training loss 

( , )~ ( )[ ( , ( , ))]adv u v p A localL D X u v′= −Ε .As described above,greater diversity will help the target network identify 

the generated graph data that is most likely to appear in its private training set. 
3. Results 
To systematically evaluate the effectiveness of generative graph model inversion attacks on GNN models, this 
study selects multiple publicly available real - world datasets for experimental and comparative analysis. During 
the experiments, the effectiveness of the attacks is first evaluated using different datasets under a variety of 
evaluation metrics, with the experimental results then analyzed and verified. Next, the impact of public knowledge 
is experimentally verified. Finally, ablation experiments are conducted to analyze the contribution of each 
component. All experiments are implemented using the Python 3.9 programming language on an Ubuntu 18.04 
LTS operating system, with a Hygon 7381 processor, 32GB of RAM, and a DCU Z100L 32G graphics card. 
3.1 Experimental Setup 
In this study, three highly representative real - world graph datasets are selected from the Stanford Large Network 
Dataset Collection website for experiments. These datasets possess distinct characteristics in terms of network 
structure and data features, providing rich data support for comprehensively evaluating the effectiveness of 
generative graph model inversion attacks in GNN models. The datasets are Cora, Citeseer, and Polblogs. Table 1 
briefly analyzes the nodes, edges, and node features of the experimental datasets. 
 
Table 1. Datasets 

Datasets | |V  | |E  X  lC asses  
Cora 2708 5278 1433 7 

Citeseer 3327 4552 3703 6 
Polblogs 1490 19025 - 2 
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1) Conventions: Each dataset is split into two disjoint parts: one as a private dataset for training the target network 
and the other as a public dataset for prior knowledge distillation. Throughout the experiments, there is no class 
overlap between the public data and the private training data of the target network. This ensures fairness by 
allowing the adversary to acquire only generic feature knowledge across all classes from the public dataset, without 
access to private, class - specific features used in training the target network. 
2) Model: The target model is a Graph Convolutional Network (GCN) consisting of two convolutional layers and 
one fully connected layer, with parameters consistent with the original literature. The GCN was chosen as the 
experimental baseline due to its foundational role in GNNs. During training, 10% of nodes are randomly sampled 
as the training set, 20% as the validation set, and the model is trained for 200 epochs using a gradient strategy 
based on convergence behavior and accuracy. 
3) Parameter Settings: In terms of model architecture, the hidden layer dimension is set as Hidden_dim=128, with 
the hidden layer dimension of the local discriminator being 32 and that of the global discriminator being 64. For 
training parameters, the generator undergoes 30,000 default training epochs with a learning rate of 0.0005, while 
the discriminator also uses a learning rate of 0.0005; the number of edges sampled each time and the attack training 
iteration count are specified according to experimental requirements. In the loss function configuration, the global 
discriminator loss weight is 0.7, the local discriminator loss weight is 0.3, the global deception loss weight is 0.7, 
the local deception loss weight is 0.3, the similarity loss (qu) weight is 1, the confidence loss (confidence) weight 
is -2.5, and the sparsity loss (sparse_loss) weight is 0.8. 
4) Evaluation Metrics: Since the attack is unsupervised and the adversary cannot determine a specific threshold 
for predictions, this study follows prior model inversion work by using Area Under the Receiver Operating 
Characteristic Curve (AUC) and Average Precision (AP) as primary metrics. AUC and AP are computed using all 
edges from the training graph and an equal number of randomly sampled non - connected node pairs. 
3.2 Performance Analysis 
GenG-MIA is compared with the state-of-the-art gradient-based model inversion attack GraphMI (Zhang, 2021) 
and the early inverse-model-based attack GE (Zhang,2022). The black-box attack in RL-GraphMI (Zhang, 2021) 
is the first model inversion attack proposed for GNNs, where the adversary uses reinforcement learning for graph 
structure reconstruction and returns the graph structure with the closest label value distance. GE is one of the 
earliest attack algorithms on GNNs that uses the decoder of an autoencoder to reconstruct graphs from graph 
embeddings. The results of model inversion attacks on GCN models are summarized in Table 2. As shown, by 
controlling the generator's training iterations and time, GenG-MIA achieves balanced performance across almost 
all datasets. In contrast, optimization-based methods are highly unstable-gradient descent often leads to 
meaningless local minima. Existing model inversion attacks tend to generate adversarial samples that can deceive 
the target network but lack recognizable privacy features, making them more covert. Additionally, we observe that 
all methods achieve lower accuracy on the Polblogs dataset. As shown in Figures 2 and 3, which display the 
topological structures and degree distributions of each dataset, Cora and Citeseer have dense central clusters with 
skewed degree distributions (high influence in central nodes), while Polblogs has fewer central clusters, a more 
uniform degree distribution, and no node features-limited edge information inference likely contributes to the poor 
attack performance on this dataset. 
 
Table 2. Performance Comparison of GCN Black-Box Attacks 

Meth Cora Citeseer Polblogs 
AUC AP AUC AP AUC AP 

GE 0.745 0.722 0.765 0.77 0.59 0.564 
RL-GraphMI 0.744 0.691 0.871 0.844 0.526 0.402 
GenG-MIA 0.796 0.768 0.782 0.723 0.652 0.648 
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Figure 2. (a) Topological structure of the Cora dataset; (b) topological structure of the Citeseer dataset; (c) 

topological structure of the Polblogs dataset 
 

 
Figure 3. (a) Degree distribution of the Cora dataset; (b) degree distribution of the Citeseer dataset; (c) degree 

distribution of the Polblogs dataset 
 

3.3 Ablation Experiments 
To validate the effectiveness of key components in the GenG-MIA framework, we design systematic ablation 
experiments by progressively removing core modules to quantify performance changes and visually assess each 
component’s contribution to attack utility. Experiments are conducted on the Cora dataset using the GCN model, 
with evaluation metrics including AUC and AP, and the generator trained for 10,000 iterations. As shown in Table 
3, removing either the local or global discriminator leads to a decrease in AUC. Figure 4 illustrates the loss 
dynamics during training: removing the local discriminator (Figure 4a) causes unstable oscillations, while 
removing the global discriminator (Figure 4b) results in more stable but suboptimal training. This indicates that 
the local discriminator stabilizes training and enhances fine-grained recovery capabilities. 
 
Table 3. Impact of Component Ablation on Attack Performance 

Configuration AUC AP 
Full GenG-MIA 0.796 0.768 

W/o Local Discriminator 0.748 0.714 
W/o Global Discriminator 0.732 0.726 

 
Figure 4. (a) Training loss without the local discriminator; (b) training loss without the global discriminator. 
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These results demonstrate that multi-scale discriminators collaboratively constrain the generation process from 
both macro-topological coherence and micro-structural consistency, mutually reinforcing each other. Generative 
samples lacking diversity loss exhibit severe model collapse in the feature space. Theoretical analysis shows that 
the diversity loss enforces linear independence of generated samples in the target model’s feature space via 
orthogonal constraints, avoiding local optima during optimization. 
4. Conclusion 
This paper actively explores the privacy risks in GNN models within the context of model deployment, addressing 
the challenge of introducing GAN into graph model inversion attacks for GNNs for the first time. The generative 
graph model inversion attack, GenG-MIA, designs a hybrid similarity generator and dual-discriminator 
collaborative training under black-box settings, optimizes generator parameters through multi-objective loss 
training with alternating iterative updates, and controls sparsity and value ranges using regularization and masking 
matrices. By leveraging GANs, it reduces dependency on model queries and parameter control, balances high-
order semantics with local topological consistency via a hybrid similarity generator, and overcomes the perception 
limitations of single discriminators through dual-discriminator collaboration. Based on this framework, the study 
proposes a generative attack algorithm to explore broader privacy risks in GNNs and improve attack efficiency. 
Experimental comparisons on multiple public real-world datasets-split into private and public subsets for fairness-
show that increasing iterations enhance attack performance, with generated graph data approaching real data in 
target classifier performance, though this comes with significantly longer training times and a larger feature-space 
distance between generated and real data, necessitating trade-offs between attack performance and computational 
costs in practical applications. 
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