
 International Journal of Applied Science; Vol. 8, No. 2; 2025 

ISSN 2576-7240  E-ISSN 2576-7259 

https://doi.org/10.30560/ijas.v8n2p22 

 22 Published by IDEAS SPREAD 

 

An Enhanced Framework for Urban Water Consumption Analysis: 

Feature Clustering with Ensemble Methods 

Faye F.F. Jiang1 

1 Scholar, Hong Kong 

Correspondence: Faye F.F. Jiang, Scholar, Hong Kong. E-mail: jiangfeifengoffice 163.com 

 

Received: March 20, 2025; Accepted: April 5, 2025; Published: April 6, 2025 

 

Abstract 

Urban water consumption analysis presents significant challenges due to the complex interplay of socioeconomic, 

demographic, and built environment factors. This paper introduces a novel Feature Clustering Framework of TopK 

and Threshold with Ensemble Method (FCTTE) specifically designed to address high-dimensional urban datasets. 

We evaluate this framework using a comprehensive dataset of 1,120 features across eight domains related to New 

York City's urban environment. Our experiments demonstrate that FCTTE significantly outperforms conventional 

feature selection methods, improving LightGBM classification accuracy by 4.6% compared to baseline, while 

traditional methods achieved only 1% improvement. The framework identified median family income, energy 

usage intensity, adult male population, greenhouse gas emissions, and commercial building characteristics as the 

most influential factors affecting water consumption. By effectively managing feature redundancy through 

hierarchical clustering and strategic selection, FCTTE provides urban planners with interpretable insights for water 

resource management while maintaining superior predictive performance. This integrated approach bridges the 

gap between fragmented analyses of individual urban factors and the need for holistic understanding of water 

consumption patterns in complex urban environments. 
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1. Introduction 

Water resource management has become increasingly critical as urbanization accelerates worldwide [1]. Urban 

areas, with their concentrated populations and diverse water usage patterns, present unique challenges and 

opportunities for water conservation [2]. Decision-makers in urban planning and environmental policy require 

comprehensive data-driven approaches to effectively manage these precious resources [3–5]. 

1.2 Literature Review 

Previous research on urban water consumption has primarily relied on limited datasets with relatively few features. 

For instance, [6] used demographic variables alone to predict residential water consumption in Kurdistan, 

achieving moderate accuracy but failing to capture the complexity of urban water usage patterns. Similarly, [7] 

examined the relationship between economic factors and water consumption, employing linear regression models 

on datasets with fewer than 20 features. 

These studies, while valuable, have typically employed linear modeling approaches due to their computational 

simplicity and the limited number of features available. [8] achieved an high R² using multiple linear regression 

with different socioeconomic variables, while [9] incorporated climate variables to achieve marginally results. The 

linear nature of these models inherently limits their ability to capture complex, non-linear relationships among the 

multitude of factors influencing urban water consumption. 

Furthermore, most existing studies have focused on specific aspects of urban environments—such as residential 

patterns [10], economic indicators [11], or building characteristics [12]—rather than integrating these diverse 

factors into a unified analytical framework. This fragmented approach has resulted in models that, while providing 

reasonable performance metrics, fail to offer comprehensive insights that urban planners need for holistic water 

resource management [13–15]. 

1.3 Research Gap and Objectives 

The limitations of existing approaches present several important research gaps: 

1. Most studies utilize datasets with limited features, failing to capture the multidimensional nature of urban 
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water consumption 

2. Linear modeling approaches predominate, potentially missing complex non-linear relationships 

3. Fragmented analysis of different urban factors prevents comprehensive understanding 

4. High-dimensional data processing challenges have not been adequately addressed in this domain 

To address these gaps, this paper proposes an integrated approach using machine learning methods on a 

comprehensive, high-dimensional dataset encompassing eight major categories of urban factors: energy, 

population, education, social factors, economic indicators, housing characteristics, geographic information 

systems (GIS) data, and additional relevant parameters [16]. Our dataset thoroughly covers various factors 

potentially influencing water resource consumption, resulting in over one thousand features for analysis. 

The primary contributions of this paper are: 

1. Development of a novel feature selection framework—Feature Clustering Framework of TopK and 

Threshold with Ensemble Method (FCTTE)—specifically designed to handle high-dimensional urban 

datasets 

2. Implementation and evaluation of this framework using the LightGBM algorithm, demonstrating superior 

performance compared to conventional feature selection methods 

3. Identification of the most influential factors affecting urban water consumption through comprehensive 

analysis 

4. Provision of data-driven insights to guide urban planning and water conservation policy 

By leveraging advanced machine learning techniques on this extensive dataset, we aim to provide urban decision-

makers with more comprehensive insights into water consumption patterns, facilitating better resource planning 

and conservation measures. 

2. Methodology 

2.1 Problem Statement and Overview 

When analyzing urban water consumption patterns, researchers face challenges with high-dimensional datasets 

containing numerous potentially relevant features across diverse domains (demographic, economic, geographic, 

etc.). Effective feature selection becomes critical for both computational efficiency and model performance. This 

section introduces our novel Feature Clustering Framework of TopK and Threshold with Ensemble Method 

(FCTTE), which addresses these challenges through a systematic approach to feature selection and classification. 

Traditional feature selection methods face limitations when applied to high-dimensional urban datasets. For 

instance, correlation-based methods only examine relationships between individual features and the target variable, 

potentially discarding features with complex interactions [17]. While Principal Component Analysis (PCA) 

preserves information while reducing dimensionality, it transforms features into components that lack direct 

interpretability—a critical consideration for urban planners and policymakers who need actionable insights. 

Our FCTTE framework overcomes these limitations through hierarchical clustering of features followed by 

strategic selection and ensemble learning. Figure 1 presents the complete framework: 

 
Figure 1. FCTTE Framework 
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2.2 FCTTE Framework Components 

The FCTTE framework consists of four principal components: 

2.2.1 Input Processing and Value Transformation 

The framework begins with a preprocessed dataset containing all potential features [18,19]. These features undergo 

transformation using one of three methods: 

- Normalization: Features are standardized without altering their fundamental relationships, providing a 

baseline approach that maintains the original dataset structure. 

- Correlation Distance Matrix: Features are transformed into a distance matrix based on correlation 

coefficients, shifting the subsequent clustering to identify relationships based on linear feature 

associations [20]. 

- Mutual Information Distance Matrix: Features are transformed into a distance matrix based on mutual 

information, which captures both linear and non-linear relationships between features. 

Each transformation method offers distinct advantages: Normalization preserves original relationships, Correlation 

focuses on linear dependencies, and Mutual Information captures more complex interactions. Their computational 

efficiency and representative capabilities make them ideal for our framework. 

2.2.2 Feature Clustering 

After transformation, we apply Hierarchical Clustering (HC) to organize features into meaningful groups. HC was 

selected over alternative clustering approaches for several key advantages: 

- It establishes hierarchical relationships between features, facilitating the identification of feature 

importance structures 

- It does not require a predefined number of clusters, allowing for flexible adjustment based on results 

- It enables intuitive visualization of feature relationships through dendrograms 

The clustering process follows these steps: 

1. Initially treat each feature as an individual cluster 

2. Calculate the distance/similarity between clusters using Ward's Method 

3. Merge the two most similar clusters 

4. Repeat until a single cluster remains 

Ward's Method minimizes the increase in the sum of squared differences when merging clusters. It tends to create 

more balanced clusters by preferring to merge clusters with fewer samples when centroids are equidistant [21,22]. 

 

Figure 2. Ensemble Method Flow 

 

2.2.3 Feature Selection Strategies 

After clustering, we apply two complementary selection strategies to identify the most informative features [23,24]: 

• Top K: Select the K most important features from each cluster 

• Threshold: Select features whose importance exceeds a specified percentile threshold within each cluster 
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These strategies balance between cluster representation (ensuring features from each identified group are included) 

and feature importance (prioritizing the most predictive features). By implementing both approaches across 

different data transformations, we generate six distinct feature subsets. 

2.2.4 Ensemble Learning 

The final component of our framework employs ensemble learning to combine multiple models into a single, more 

robust classifier. For our urban water consumption classification problem, we use a majority voting strategy across 

the six models derived from our different feature selection approaches. 

The ensemble approach, pioneered by [25] leverages the strengths of each individual model while mitigating their 

respective weaknesses. In our implementation, we generate six different LightGBM models—one for each feature 

subset—and combine their predictions through majority voting, as illustrated in Figure 2: 

2.3 LightGBM Algorithm 

For our modeling component, we selected the LightGBM algorithm for its exceptional performance with high-

dimensional data. Developed by Microsoft [26], LightGBM incorporates several innovations that make it 

particularly well-suited for our urban water consumption analysis: 

• Gradient-based One-Side Sampling (GOSS): Focuses computational resources on the most informative 

instances by retaining high-gradient samples and randomly sampling low-gradient ones, significantly 

reducing computation time without sacrificing accuracy. 

• Exclusive Feature Bundling (EFB): Combines mutually exclusive features (those that rarely take non-

zero values simultaneously) into single features, effectively reducing dimensionality without losing 

information. 

• Leaf-Wise Growth Strategy: Unlike traditional level-wise tree growth that expands all nodes at the same 

level, LightGBM's leaf-wise approach always chooses the leaf with maximum delta loss to grow, resulting 

in more efficient models with the same number of splits. 

Additional advantages of LightGBM include reduced memory consumption, native support for categorical features, 

and distributed computing capabilities, making it particularly well-suited for analyzing complex urban systems 

with high-dimensional data. 

This comprehensive methodological framework provides a robust approach to identifying the most significant 

factors influencing urban water consumption patterns, while maintaining interpretability that is crucial for urban 

planning and policy applications. 

3. Case Study 

This section details our application of the FCTTE framework to analyze urban water consumption patterns in New 

York City. We describe the diverse data sources incorporated, data integration methodologies, and preprocessing 

techniques employed to prepare for modeling. 

3.1 Data Sources 

Our study leverages eight distinct datasets from New York City, collectively providing a comprehensive view of 

the urban environment. Table 1 summarizes these datasets, which together comprise 1,120 features across multiple 

domains. 

 

Table 1. The collected 1120 features across multiple domains 

Datasets Description 

Water Consumption Social POI 

Features Category Counts Features Category Counts Features Category Counts 

Area 5 Households by Type 16 Subway 3 

Energy 20 Relationship 7 Theater 3 

Position 2 Marital Status 12 School 3 

Features with Dummy Variables 44 Fertility 7 Financial 3 

Other 6 Grandparents 9 Hospital 3 

Total 77 School Enrollment 6 Police 3 

Housing  Education Attainment 8 HEC 3 

Features Category Counts Veteran Status 2 Art 3 

Housing Occupancy 5 Disability Status 8 News 3 
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Units in Structure 10 Residence One Year Ago 8 Museum 3 

Year Construction Built 11 Place of Birth 7 WIFI 3 

Rooms 11 Citizenship Status 3 Bus 3 

Bedrooms 7 Year of Entry 7 Total 36 

Housing Tenure 5 Birth of Foreign Born 7 PLUTO 

Year Householder Moved into Unit 7 Language Spoken at Home 12 Features Category Counts 

Vehicles Available 5 Ancestry 28 Area 10 

House Heating Fuel 10 Computers and Internet Use 3 Location 10 

Selected Characteristics 4 Total 150 Facilities 7 

Occupants per Room 4 Economic Residential Units Information 11 

Owner Occupied Units 10 Features Category Counts Land Information 6 

Mortgage Status 3 Employment Status 16 Maximum Allowable Area Ratio 4 

Selected Monthly Owner Costs 33 Commuting to Work 8 Features with Dummy Variables 344 

Gross Rent 18 Occupation 6 Other 10 

Total 143 Industry 12 Total 402 

Education Class of Worker 5 Demographic 

Features Category Counts Income and Benefits 44 Features Category Counts 

Education Population by Sex & Age 75 Health Insurance Coverage 24 Sex and Age 29 

Education Population by Race 72 Total 115 Citizen Voting Age Population 3 

Median Earnings by Education 18   Total  32 

Total 165      

ALL Features: 1120 

 

3.1.1 Socioeconomic and Demographic Data 

Five primary datasets (Economic, Demographic, Education, Housing, and Social) were obtained from the 

Department of City Planning (DCP) in New York City. These datasets capture fundamental aspects of urban life 

that potentially influence water consumption patterns: 

- Economic factors: Employment status, income levels, occupation types, industry sectors, health 

insurance coverage, and commuting patterns (115 features) 

- Demographic characteristics: Population by age, sex, and citizenship status (32 features) 

- Educational attributes: Educational attainment, school enrollment, and median earnings by education 

level (165 features) 

- Housing parameters: Housing occupancy, unit structure, construction year, housing tenure, heating fuel 

types, and mortgage status (143 features) 

- Social indicators: Household composition, relationship status, fertility rates, disability status, language 

preferences, and ancestry information (150 features) 

These datasets provide essential context for understanding how socioeconomic and demographic characteristics 

might influence water consumption behaviors at the community level. 

3.1.2 Built Environment and Geographic Information 

Three additional datasets capture the physical urban landscape: 

- POI (Points of Interest): Obtained from the Department of Information Technology & 

Telecommunications (DOITT), this dataset maps the spatial distribution of urban amenities including 

transportation hubs, educational facilities, commercial establishments, cultural venues, and public 

services (36 features) 

- PLUTO (Primary Land Use Tax Lot Output): Also from DCP, this dataset provides detailed land use and 

geographic information at the tax lot level, recording building characteristics, land values, zoning 

information, and other property attributes (402 features) [27] 

- Water Consumption: From the Mayor's Office of Sustainability (MOS), this dataset contains water usage 

metrics along with related energy consumption data including electricity usage, natural gas consumption, 

and carbon dioxide emissions (77 features) 

The integration of these diverse datasets enables us to investigate relationships between water consumption and a 

wide spectrum of urban factors that might not be immediately apparent in more narrowly focused studies. 
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3.2 Combining Datasets 

A significant methodological challenge was the integration of datasets collected at different spatial units. This 

section details our approach to data integration. 

3.2.1 Spatial Unit Reconciliation 

Two primary spatial units were present across our datasets: 

- BBL (Borough, Block, and Lot): A unique identifier assigned by DCP to each property in New York City 

- Census Tract: Geographic units defined by the U.S. Census Bureau for population enumeration 

Our integration followed a three-step process [28], as illustrated in Figure 3: 

 
Figure 3. Data Integration Process 

 

1. BBL-Level Integration: POI, PLUTO, and Water Consumption datasets shared BBL as their common 

identifier. Using Water Consumption as the base, we performed a left join with the other BBL-level 

datasets. 

2. Census Tract Integration: Economic, Demographic, Education, Housing, and Social datasets used Census 

Tract as their identifier. Using Demographic as the base, we performed a left join with the other Census 

Tract-level datasets. 

3. BBL to Census Tract Aggregation: To create a unified dataset, we converted BBL-level data to Census 

Tract level through aggregation: 

a. Numerical features were aggregated using median values within each Census Tract 

b. Categorical features were aggregated using mode values within each Census Tract 

This aggregation process inevitably resulted in some information loss, as detailed property-level variations were 

consolidated into tract-level summaries. This limitation is acknowledged as a constraint of our study, necessitated 

by the unavailability of BBL-level socioeconomic data. However, the Census Tract represents a meaningful unit 

for urban analysis, balancing granularity with practical data availability constraints. 

3.3 Data Preprocessing 

After combining our diverse datasets, we implemented a systematic preprocessing pipeline to prepare our data for 

modeling [29,30]. Our target variable, Water Intensity (WI), required particular attention due to its distribution 

characteristics and the transformation of our analytical approach from regression to classification. 
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Water intensity (WI) refers to the amount of water consumed per unit area, typically measured in gallons per square 

foot (gal/ft²) or similar units. In the context of urban buildings and neighborhoods, water intensity provides a 

normalized measure of water usage that allows for meaningful comparisons across buildings or areas of different 

sizes. 

3.3.1 Spatial Distribution Analysis 

We first examined the spatial distribution of water intensity across New York City census tracts (Figure 4). The 

GIS map reveals distinct usage patterns, with high water consumption areas concentrated primarily in northern 

Manhattan and portions of the Bronx, while other high-usage zones appear scattered throughout the city. Gray 

areas represent locations with missing data. This spatial visualization provided initial insights into potential 

neighborhood-level factors influencing water consumption. 

 

Figure 4. NYC water intensity GIS map 

 

3.3.2 Target Variable Processing 

Given our aggregation to the Census Tract level and the complexity of the factors involved, we converted the water 

intensity prediction from a regression to a binary classification problem. This approach allows us to identify areas 

with disproportionately high water usage and the features that most significantly contribute to this classification. 

 

Figure 5. Water Intensity Histogram Before and After Outlier Removal 

 

The transformation process involved several carefully sequenced steps: 

1. Initial Distribution Analysis: We generated a histogram of the raw WI values using 100 bins (Figure 5-a), 

which revealed a highly skewed distribution with numerous outliers. 

2. Outlier Management: Statistical analysis confirmed that many extreme values likely represented 
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measurement errors or truly anomalous consumption patterns. To ensure robust modeling, we applied the 

Interquartile Range (IQR) method, that is removing the outliers beyond boundaries at Q1 - 3*IQR and 

Q3 + 3*IQR. This approach preserved meaningful variability while eliminating potentially problematic 

extreme values that could distort our analysis. 

3. Post-Outlier Removal Assessment: After outlier removal, we re-analyzed the distribution (Figure 5-b), 

confirming a more normalized pattern suitable for further analysis. 

4. Binary Classification Transformation: We partitioned the continuous WI values into "Higher" and 

"Lower" categories using the median value as the threshold, creating a balanced binary classification 

problem. 

3.3.3 Feature Preprocessing 

We implemented comprehensive feature preprocessing to ensure data quality and model relevance: 

1. Missing Value Treatment: For remaining features, we imputed missing values using the median for 

numerical features, providing a robust central tendency measure less affected by outliers than the mean. 

2. Feature Filtering: We applied multiple filtering criteria to ensure data quality and relevance. That is 

removing features with excessive missing values (>50%), eliminating non-informative administrative 

features (addresses, building names, owner information), and excluding features with direct mathematical 

relationships to the target variable, such as absolute water usage metrics that could be derived from area 

calculations, which would create artificial predictive power 

3. Categorical Feature Handling: Categorical variables were appropriately encoded to make them suitable 

for machine learning algorithms. 

3.3.4 Final Dataset Characteristics 

The final processed dataset contained 1,381 Census Tracts characterized by 1,121 features (1,120 predictors and 

1 binary target variable). The considerable reduction in standard deviation (from 1,375.23 to 29.35) confirms the 

effectiveness of our outlier removal approach, creating a more stable foundation for subsequent modeling. The 

slight class imbalance (824 low vs. 557 high WI observations) was addressed through appropriate evaluation 

metrics and validation techniques in our modeling approach. 

This comprehensive dataset served as the foundation for our application of the FCTTE framework, enabling us to 

identify the most significant factors influencing urban water consumption patterns across New York City. 

4. Results and Discussion 

This section presents the performance evaluation of our proposed FCTTE framework for urban water consumption 

classification. We begin by explaining the evaluation metrics used, compare various machine learning algorithms, 

assess existing feature selection methods, analyze our FCTTE framework's performance, and finally examine the 

most influential features affecting water intensity. 

4.1 Evaluation Metrics 

We employed two widely used metrics for evaluating classification model performance: Accuracy score and ROC-

AUC score. 

4.1.1 Accuracy Score 

Accuracy score provides an intuitive measure of a model's predictive performance, calculated as the ratio of correct 

predictions to the total number of predictions: 

Accuracy = 
Number of correct predictions

Total number of predictions
                           (1) 

This metric offers a straightforward assessment of how often the model correctly classifies samples. 

4.1.2 ROC-AUC Score 

The Receiver Operating Characteristic (ROC) curve plots the true positive rate (sensitivity) against the false 

positive rate (1-specificity) at various threshold settings. The Area Under the Curve (AUC) quantifies the model's 

ability to discriminate between classes, with values typically ranging between 0.5 (random classification) and 1.0 

(perfect classification). Higher AUC values indicate better model performance, making this metric valuable for 

comparing classification models. 

 

 



ijas.ideasspread.org   International Journal of Applied Science Vol. 8, No. 2; 2025 

 30 Published by IDEAS SPREAD 

 

4.2 Comparison of Machine Learning Classification Algorithms 

To establish a performance baseline, we evaluated twelve common machine learning classification algorithms on 

our complete dataset (1,381 samples with 1,120 features). We employed K-fold cross-validation to ensure reliable 

and generalizable results, as illustrated in Figure 6. 

 
Figure 6. K-fold Cross-Validation methodology 

 
Figure 7. Performance Comparison 

 

The performance comparison of these algorithms is presented in Figure 7. Decision tree-based ensemble methods 

consistently outperformed other approaches. Notably, GradientBoostingClassifier and RandomForestClassifier 

demonstrated superior performance compared to the basic DecisionTreeClassifier, reflecting the effectiveness of 

their respective optimization techniques (Gradient Boosting and Bagging). 

LightGBM achieved the highest performance with an Accuracy score of 0.801 and ROC-AUC score of 0.786, 

outperforming the base DecisionTreeClassifier by approximately 12.6%. This superior performance can be 

attributed to LightGBM's advanced techniques, including Gradient-based One-Side Sampling (GOSS), Exclusive 

Feature Bundling (EFB), and Leaf-wise growth strategy, which efficiently handle high-dimensional data. 

Support Vector Classifier (SVC) showed relatively poor performance, likely due to suboptimal kernel function 

selection for this high-dimensional dataset when using default parameters. 

4.3 Evaluation of Conventional Feature Selection Methods 

We compared five widely used feature selection approaches: Mutual Information, Correlation, Recursive Feature 

Elimination (RFE), Random Forest, and Extra Trees. To facilitate comparison, we used a consistent step size of 

50 features and evaluated their impact on four algorithms: LightGBM, GBDT, SVC, and MLPClassifier. 
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Table 2 presents the optimal feature count and corresponding performance metrics for each method. Several key 

observations emerged: 

• Varying impact across algorithms: Feature selection yielded performance improvements of approximately 

1% for LightGBM, 2.2% for GBDT, 5.4% for SVC, and 4% for MLPClassifier compared to using the 

full feature set. 

• Algorithm-specific benefits: LightGBM showed the smallest improvement from feature selection, likely 

because it inherently performs feature selection during training by excluding low-gain features at leaf 

nodes. 

• Method-specific impacts: The Random Forest feature selection method provided the most substantial 

improvement for SVC (7.6%), while RFE yielded the greatest improvement for MLPClassifier (5.5%). 

• Different convergence rates: Figure 8 illustrates how accuracy evolves with increasing feature count for 

each selection method. Correlation-based selection demonstrated the slowest convergence, stabilizing 

only after approximately 400 features, reflecting its limitation in capturing relationships beyond linear 

feature-target associations. 

• Tree-based methods' efficiency: Extra Trees achieved optimal performance with just 151 features, 

followed by RFE and Random Forest. Correlation and Mutual Information required substantially more 

features to reach peak performance, highlighting the efficiency of tree-based methods in identifying 

informative feature subsets. 

Based on these findings, we selected LightGBM as our base algorithm for subsequent analysis due to its superior 

overall performance, despite showing the least improvement from conventional feature selection. 

 

Table 2. Performance metrics for different feature selection methods. 

  
Algorithms 

Accurac

y 

Roc_Au

c 

Number of 

Features 
  Algorithms Accuracy Roc_Auc 

Number of 

Features 

L
ig

h
tG

B
M

 

Mutual Information 0.806  0.792  801 

G
B

D
T

 

Mutual Information 0.801  0.786  401 

Correlation 0.806  0.791  601 Correlation 0.786  0.774  801 

RFE 0.815  0.799  251 RFE 0.798  0.791  351 

Random Forest 0.806  0.791  251 Random Forest 0.801  0.783  51 

Extra Trees 0.815  0.803  151 Extra Trees 0.806  0.789  201 

No Feature 

Selection 
0.801  0.786  1120 

No Feature Selection 
0.780  0.771  1120 

S
V

C
 

Mutual Information 0.754  0.740  51 

M
L

P
C

la
ss

if
ie

r 

Mutual Information 0.775  0.765  451 

Correlation 0.760  0.740  401 Correlation 0.757  0.754  451 

RFE 0.772  0.764  51 RFE 0.801  0.792  201 

Random Forest 0.783  0.769  51 Random Forest 0.789  0.784  251 

Extra Trees 0.777  0.767  201 Extra Trees 0.777  0.769  201 

No Feature 

Selection 
0.728  0.708  1120 

No Feature Selection 
0.746  0.731  1120 

 
Figure 8. Performance dynamics with different number of selected features. 
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4.3 FCTTE Performance Evaluation 

After analyzing conventional feature selection methods, we evaluated our proposed FCTTE framework using 

LightGBM as the base algorithm. 

Figure 9 and Figure 10 illustrate how accuracy varies with cluster count for the Top K and Threshold selection 

strategies, respectively. The Mutual Information-based clustering consistently outperformed Normalization and 

Correlation approaches, with optimal performance occurring around 40 clusters. Correlation-based clustering 

showed the weakest performance overall. 

 
Figure 9. Accuracy vs number of clusters for TopK method 

 

 
Figure 10. Accuracy vs number of clusters for Threshold method 

 
Figure 11. Feature selection process for TopK method 
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The feature selection progression for each method at their optimal cluster count is shown in Figure 11 and Figure 

12. Notably, Correlation-based methods exhibited the slowest convergence, while the Mutual Information-based 

approaches achieved peak performance at approximately 200 features before stabilizing. 

 
Figure 12. Feature selection process for Threshold method 

 

Table 1 summarizes the performance of all six FCTTE variants (three transformation methods × two selection 

strategies). All variants demonstrated significant improvements over conventional feature selection methods. The 

Mutual Information transformation with Threshold selection strategy achieved the best overall performance with 

an Accuracy score of 0.835 and ROC-AUC score of 0.824. 

 

Table 3. Performance summary. 

Algorithms  Accuracy Roc_Auc Number of Features 
Number of 

Clusters 

TopK/ 

Threshold 

Correlation 
Top K 0.812 0.797 551 18 534 

Threshold 0.812 0.797 551 18 0.4835 

Mutual 

Information 

Top K 0.827 0.813 201 42 156 

Threshold 0.835 0.824 201 37 0.152 

Normalization 
Top K 0.818 0.804 701 30 54 

Threshold 0.827 0.807 1051 18 0.9286 

 

 
Figure 13. Performance comparison between different methods 
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The effectiveness of this approach stems from its ability to: 

- Transform the original dataset into feature relationship measurements using Mutual Information 

- Group highly redundant features through hierarchical clustering 

- Select the most informative features using appropriate thresholds 

- Combine these features into a comprehensive, non-redundant feature set 

As shown in Figure 13, our ensemble approach combining all six FCTTE variants further improved performance, 

achieving approximately 3.5% higher Accuracy and 4.3% higher ROC-AUC compared to the best conventional 

feature selection method. This represents a 4.6% improvement over the baseline LightGBM with no feature 

selection—a substantial gain considering that conventional methods only improved LightGBM performance by 

approximately 1%. 

These results convincingly demonstrate the effectiveness of our FCTTE framework for feature selection in high-

dimensional urban datasets. 

4.5 Feature Importance Analysis 

To identify potential factors influencing water intensity (WI), we extracted the ten most important features from 

our FCTTE framework. As shown in Figure 14, Median Family Income (Dollars) emerged as the most influential 

factor, with an importance score 2.87 times higher than the second-ranked feature. 

 

Figure 14. Feature Importance 

 

Figure 15 illustrates the normalized values of these features across the "Lower" and "Higher" WI categories, 

providing insights into their relationships with water consumption patterns. Our analysis revealed several key 

relationships at the census tract level: 

1. Median Family Income: Strong negative correlation with WI, suggesting that higher-income households 

typically demonstrate more water-efficient consumption patterns, possibly reflecting higher education 

levels and greater conservation awareness. 

2. Site EUI (kBtu/ft²): Strong positive correlation with WI, confirming findings from previous research [31] 

that energy consumption intensity correlates with water consumption intensity. 

3. Male Population 25 Years and Over: Negative correlation with WI, potentially reflecting gender-based 

differences in water usage behaviors. Social surveys indicate that men typically spend less time showering 

than women (15% of men versus 37% of women shower for over an hour), which may contribute to lower 

water usage in areas with higher adult male populations. 

4. Direct GHG Emissions: Positive correlation with WI, likely due to the relationship between energy 

consumption and water usage patterns. 

5. Commercial Floor Area: Negative correlation with WI, suggesting that commercial buildings typically 

utilize more advanced water-efficient fixtures and may house occupants with greater conservation 

awareness compared to residential areas. 

6. AssessLand (Land Value): Negative correlation with WI, potentially indicating that higher land values 

correspond with commercial districts that demonstrate more efficient water usage [32]. 

7. Residential Units: Positive correlation with WI, supporting the observation that predominantly residential 
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areas tend to have higher water intensity than commercial zones. 

8. ExemptTot (Tax Exemption): Negative correlation with WI, possibly reflecting the presence of 

educational institutions, government facilities, and community organizations that promote water 

conservation practices. 

9. Year Built: Negative correlation with WI, indicating that newer buildings incorporate more efficient water 

systems and distribution designs than older structures. 

10. Maximum Allowable Commercial FAR: Negative correlation with WI, consistent with the finding that 

commercial areas generally demonstrate lower water intensity. 

 

Figure 15. Feature comparisons 

 

These insights provide valuable guidance for urban water resource management, highlighting socioeconomic, 

structural, and demographic factors that significantly influence consumption patterns. 

5. Conclusion 

Our study introduces the Feature Clustering Framework of TopK and Threshold with Ensemble Method (FCTTE), 

demonstrating its superior explanatory power, generalizability, and accuracy compared to conventional feature 

selection approaches. To validate this framework, we integrated eight diverse datasets from New York City, 

encompassing 1,120 features, one target variable, and 1,381 samples across multiple domains. 

We evaluated various machine learning classification algorithms, with LightGBM emerging as the best performer. 

When applied with our FCTTE framework, LightGBM showed substantial improvements of approximately 3.5% 

in Accuracy score and 4.3% in ROC-AUC score compared to the best conventional feature selection methods. 

Most notably, FCTTE improved LightGBM performance by approximately 4.6% over baseline (no feature 

selection), while conventional methods only achieved approximately 1% improvement. 

Our feature importance analysis identified key factors influencing urban water intensity, including household 

income, energy consumption, building characteristics, demographic composition, and tax policies. These insights 

provide valuable guidance for policymakers and future researchers working on urban water resource management. 

While our study aimed to comprehensively model environmental factors affecting water intensity by integrating 

multiple datasets, certain limitations should be acknowledged. The use of census tract as the basic unit of analysis, 
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while necessary due to data availability constraints, may have introduced some distortion in the dataset. However, 

these limitations do not diminish the significance of the FCTTE framework's demonstrated effectiveness. 

Finally, it is worth noting that maximizing predictive accuracy was not the primary objective of this research, 

which is why all algorithms were implemented with default parameters. The focus was instead on developing a 

robust feature selection framework capable of identifying the most influential factors in high-dimensional urban 

datasets. 
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