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Abstract 

In the context of recommendation scenarios, the utilization of data purification and data augmentation 

methodologies has demonstrated their efficiency in enhancing the quality of representations. Nevertheless, within 

an open environment, the constrained nature of interaction data and the diverse range of interaction intentions 

present formidable challenges, giving rise to insufficient generalization ability and generalization bias in these 

methodologies. To address this issue, in this paper we introduce Exploitation & Exploration: A Unified Framework 

for Data Purification & Augmentation in Recommendation Systems, which not only ensures the precise 

purification of current data but also delves into potential noisy data for further exploration. To be specific, based 

on the traditional collaborative filtering method calculating user-item correlation, we first implement an efficient 

multi-head SENet block to remove potential noise from the interaction data. After this, we deploy a diffusion 

module to remove the added adversarial noise based on its ability to denoise all kinds of noise. And finally we use 

mutual-learning method to coordinate two parts' learning. We conducted experiments on three publicly available 

datasets, evaluating our model against current state-of-the-art algorithms in recommendation robustness tasks. The 

experimental results validate the effectiveness of our model. 

Keywords: robust recommendation, data purification, data augmentation 

1. Introduction 

Recommendation systems predict users' future needs by analyzing user-item interactions. However, some 

individuals manipulate outcomes for profit, creating challenges in maintaining system robustness. To address this, 

it's crucial to reduce disruptive data and build accurate representations. 

Data purification removes irrelevant or redundant information, helping the model focus on meaningful data. 

Adversarial learning generates challenging examples to train the model, improving its ability to handle complex 

data and enhancing robustness. While effective, traditional methods have limitations: denoising can only remove 

limited noise, and data augmentation may introduce bias, harming the model's generalization ability.To overcome 

these challenges, combining data purification and augmentation is essential. However, this integration faces two 

key issues: lack of labeled data and the need for dynamic combination. To solve this, we redefine recommendation 

system robustness as a representation learning task and introduce a new framework: Exploration & Exploitation: 

A Unified Framework for Data Purification & Augmentation in Recommendation Systems. This approach 

improves representations and enhances system robustness. Our Contributions are as follows: 

1) Novel Framework: We redefine the problem and propose the first unified framework combining data 

purification and augmentation for recommendation systems. 

2) Self-Supervised Learning Module: It iteratively removes noise from interaction data, producing purified 

embeddings. Then, a diffusion-based adversarial augmentation process further enhances the data by eliminating 

remaining noise. Finally, mutual learning dynamically integrates these processes. 

3) Experimental Validation: Tests on three public datasets show our approach outperforms state-of-the-art methods 

in improving recommendation system robustness. 
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2. Related Works 

2.1 Data Purification 

The mainstream purification methods can be categorized into fine-grained methods and coarse-grained methods. 

In fine-grained methods, Liu et al.[1]proposed a two-stage automatic feature selection algorithm that embeds a 

regularized optimizer into model parameters to automatically identify and remove redundant interaction features. 

For item-level interactions, Gao et al.[2] employed meta-learning to use early-stage training information to guide 

subsequent learning, while Zhi et al.[3] used explicit feedback to guide the learning and denoising of implicit 

feedback. For noise within user-item interactions, Qin et al.[4] proposed reinforcement learning and contrastive 

learning methods to filter out item baskets unrelated to or negatively impacting the recommendation target, thereby 

improving recommendation performance. Noise in inter-item dependencies arises because not all interactions 

between user sequences or candidate items are strongly correlated. Zhang et al.[5], Cao et al.[6], and Chen et al.[7] 

modeled long-sequence dependencies using general selection modules (GSU) and fine-grained modeling modules 

(ESU) as interaction sequences became increasingly complex. 

In coarse-grained denoising methods, one approach is to treat noise as a set of items and remove it by uncovering 

specific relational structures[8] or retrieving meta-paths from knowledge graphs[9]. For decisions involving 

multimodal information and the noise within it, Chen et al. [10] analyzed the impact of different parts within each 

modality on recommendation results using attention mechanisms, among other techniques. Li et al.[11] formalized 

the selection of beneficial modalities as a multi-agent collaborative Markov decision process using multi-agent 

reinforcement learning. 

2.2 Data Augmentation 

With the widespread application of recommendation systems, some external users have started attempting to 

manipulate recommendation outcomes by constructing malicious adversarial samples[12] to achieve profit-driven 

goals. For instance, Chen et al.[13] introduced discrete perturbations into user-item interactions to enhance the 

model's ability to resist interaction-level attacks. A more popular approach involves parameter perturbation-based 

enhancement, where models are trained by adding more perturbation factors at the parameter level to handle 

increasingly complex and diverse interaction data[14]. Similarly, adversarial perturbation methods based on user 

information[15]generate influential fake users to help the recommendation system learn the distribution of users 

that are more likely to cause interference, thereby improving the model's robustness. While existing methods 

demonstrate some effectiveness, they are often tailored to specific attack scenarios. Additionally, existing 

studies[16] indicate that these methods tend to overfit robustness features specific to adversarial samples, while 

neglecting certain non-robust features, which leads to a decline in predictive performance. 

3. Method 

3.1 Notations and Task Formulation 

u ∈ 𝒰 and v ∈ 𝒱 denote users and items’ information respectively. We use 𝒟 to represent all training instances, 

and (u, v) ∈ 𝒟 is one training user-item instance. The matrix factorization model aims to minimize the empirical 

risk according to the following loss function: 

ℒ(𝒟; Θ) = ∑  (u,v)∈𝒟 ∥∥𝑢𝑣𝑇 − 𝑟∥∥
2

+ 𝜆 ∥ U ∥2+ λ ∥ V ∥2                  (1) 

Where u ∈ Rd, U = [u1, u2, ⋯ , um], v ∈ Rd, V = [v1, v2, ⋯ , vn] . u  and v  represent embedding of u  and v 

respectively, m and n are quantity of users and items in 𝒟, and 𝑟 is the score ranging from 1 to 5. Based on 

the learned model parameter Θ = {U, V}, we use x to denote the interaction emb of 𝑢 and 𝑣. The main aim of 

this study is to train a data purification & augment module and use mutual learning part to combine them together. 

The structure of our model is as follows: 



ijas.ideasspread.org   International Journal of Applied Science Vol. 8, No. 1; 2025 

 3 Published by IDEAS SPREAD 

 

 

Figure 1. Structure of Data Purification & Augmentation Model in Recommendation System 

 

3.2 Data Purification 

For the goal of the data purification module, we model it as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝑓𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑥 − 𝑓𝑝𝑢𝑟𝑖𝑓𝑦(𝑥)), 𝑦)                          (2) 

The goal of the above function is to remove the noise contained in x by using the data purification module. In this 

part, we use the SENet model and make relevant modifications to further improve its efficiency for feature 

extraction. Aiming at the problem that traditional SeNet networks have weak feature extraction capability and 

models such as DCN[17] have high feature cross-complexity, we proposes a multi-head SeNet structure that 

focuses on representation learning: 

 

Figure 2. Structure of multi-head SENet Block 

 

We assume that 𝑋 = [𝑥ℎ1, 𝑥ℎ2 , . . . , 𝑥ℎ𝑛], where ℎ𝑖 is the ith head of attention. Then in the squeeze stage, we use 

this formula to calculate: 

𝑧ℎ𝑖 = 𝐹𝑠𝑞(𝑣𝑖) = 1/𝑘∑(𝑡=1)
𝑘  𝑣𝑖

𝑡                             (3) 

Where 𝑣𝑖  is the ith dimensional feature of x. Due to the squeeze operation on n heads at the same time, the 

attention of different features can be calculated from n dimensions to better retain and fuse information.Then in 

the activation phase, multi-layer perceptrons is introduced to act on the output of the squeeze calculation: 
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𝑆 = 𝐹𝑒𝑥(𝑍, 𝑊) = 𝛿(𝑊2𝛿(𝑊1𝑍))                          (4) 

Then, using the idea of residual learning, the calculated invalid information is removed and the purified expression 

is sent to the downstream data enhancement module: 

𝑥𝑝𝑢𝑟𝑖𝑓𝑖𝑒𝑑 = 𝑥 − 𝑆 ∗ 𝑥                                 (5) 

3.3 Data Augmentation 

In this part, we mainly generates adversarial noise through various schemes to achieve the training of the generative 

diffusion model. In this part, we mainly use gradient-based adversarial noise 𝜂. It is then added to the input as an 

adversarial sample 

𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 = 𝑥𝑝𝑢𝑟𝑖𝑓𝑒𝑑 + 𝜂                               (6) 

After obtaining the adversarial samples, we use the diffusion process to remove the noise in the obtained data. The 

training process of diffusion model is divided into two processes: denoising and denoising. Among them, the 

process from 𝑥0  to 𝑥𝑇  is the forward diffusion process, which is a series of noise addition operations to the 

original image until it becomes pure noise. And the corresponding denoising process is a reverse process, from 

noise to normal image. This process can be used to calculate the posterior probability through the Bayesian 

probability formula, then we can turn posterior probability into prior probability and convert it into the form of 

normal distribution: 

𝑃(𝑥𝑡−1 ∣ 𝑥𝑡) = 𝑁 (
1

√𝛼𝑡
(𝑥𝑡 −

1−𝛼𝑡

√1−𝛼‾ 𝑡
𝜖) ,

(1−𝛼𝑡)(1−𝛼𝑡‾−1)

1−𝛼𝑡̅̅̅̅
)                   (7) 

Because the coefficients about 𝛼  are all constants, we only need to predict 𝜖 . Due to the problems that in 

adversarial training overfitting adversarial samples brings generalization bias and poor performance on normal 

data sets, we deploy diffusion to avoid this problem It does not depend on the attack form and the specific 

assumptions of the classification model. For the time step t of the noise process, we formalize it in the following 

format: 

𝜕𝐷𝐾𝐿(𝑝𝑡∥𝑞𝑡)

𝜕𝑡
≤ 0                                 (8) 

The diffusion timestep is the point when the distribution of clean data is closest to the distribution of attacked data, 

at which the derivative of their KL divergence with respect to t is less than 0. Given an adversarial sample 𝑥𝑎, the 

goal is to recover the original sample 𝑥 to maximize the posterior distribution. The defense against adversarial 

samples is solved by optimizing the problem of finding the original sample that maximizes the posterior 

distribution by maximizing the log-likelihood of the posterior distribution. A variational posterior distribution is 

introduced to approximate the true posterior distribution in the original optimization target. Its variational upper 

bound is: 

−𝑙𝑜𝑔𝑝(𝑥𝑎) ≤ 𝔼𝑞(𝑥)[−𝑙𝑜𝑔𝑝(𝑥𝑎 ∣ 𝑥)] + 𝐾𝐿(𝑞(𝑥) ∥ 𝑝𝜃(𝑥))                 (9) 

So we simplifies the loss function into this form: 

ℒ𝑀𝑆𝐸(𝑥, 𝑥𝑎 , 𝜃) = 𝔼𝑡∼𝒰(0,1),𝜖∼𝒩(0,𝐼)[∥∥𝐷𝜃(𝑥 + 𝜎𝑡𝜖; 𝑡) − 𝑥∥∥
2

2
+ 𝜆∥∥𝑥 − 𝑥𝑎∥∥2

2]       (10) 

𝐷𝜃(𝑥 + 𝜎𝑡𝜖; 𝑡) is the output after denoising process with added Gaussian Noise at timestep t. The train process 

is as follows: 

 

Algorithm 1: Data Augmentation Based on Diffusion Process 

Input： Input from data purification module 𝑥𝑝𝑢𝑟𝑖𝑓𝑖𝑒𝑑 , Input with adversarial noise 𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 , Diffusion 

denoising part 𝐷𝜃 , Gaussian Noise added timestep t，Epoch n, Learning rate 𝜂 

Output：Augmented representation  𝑥𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑   

𝑥0 = 𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑  

for i ϵ 0, . . . , M − 1 do 

  Sample 𝜖1, 𝜖2 from 𝒩(0; 𝐼) 

𝑥𝑖,𝑡 = 𝑥𝑖 + 𝜎𝑡𝜖1

𝑥𝑎,𝑡 = 𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑑 + 𝜎𝑡𝜖2
 

Calculate grad of 𝑥𝑖  according to ℒ𝑀𝑆𝐸: 
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𝑔𝑟𝑎𝑑 = 𝛻𝑥𝑖
[∥∥𝐷𝜃(𝑥𝑖,𝑡; 𝑡) − 𝑥𝑖∥∥

2

2
+ ∥∥𝐷𝜃(𝑥𝑖,𝑡; 𝑡) − 𝐷𝜃(𝑥𝑎,𝑡; 𝑡)∥∥

2

2
] ;

𝑥𝑖+1 = 𝑥𝑖 − 𝜂 ⋅ 𝑔𝑟𝑎𝑑;
 

End 

Return output 𝑥𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑  

Then me deliver the output 𝑥𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑  into the mutual learning module below. 

 

3.4 Mutual Learning 

In this part, the above two module are coordinated through a unified loss function： 

𝐿total = 𝐿𝑓𝑢𝑠𝑒𝑑 + 𝑇2 (𝐿𝐾𝐿(𝑥purified ∥𝑥𝑓𝑢𝑠𝑒𝑑) + 𝐿𝐾𝐿(𝑥augmented ∥𝑥fused )
)               (11) 

𝐿total represents total loss function and uses MSE loss function. 𝑥𝑓𝑢𝑠𝑒𝑑   is fused by concatenate 𝑥purified  and 

𝑥augmented  and send them through multi-layer perceptrons. 𝐿𝐾𝐿(𝑥purified ∥𝑥𝑓𝑢𝑠𝑒𝑑) and 𝐿𝐾𝐿(𝑥augmented ∥𝑥fused )
represent the 

difference between fused result and initial distribution 𝑥purified  or 𝑥augmented  to ensure the consistency of the 

results before and after fusion. And T is an adjustable hyperparameter to control the weight of the loss function. 

4. Experiments 

In this section, we experiment our proposed approach and a variety of robustness enhancement methods under 

different adversarial attack scenarios. The experimental results verify the effectiveness of our proposed method 

Dataset and Experimental Settings 

In our experiment, we used the dataset of MovieLens 1M, MovieLens 100K and YELP. According to the network 

layers and parameter requirements of the model, this task runs on the online server with Intel Xeon Gold 

CPU@3.30Hz*64 512G and two NVIDIA V100 graphics cards. The operating system of this task is based on 

Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-62-generic x86_64), Python 3.8, PyTorch 1.11. 

4.2 Baselines and Metrics 

4.2.1 Attack Methods: 

Random Attack: Assigns the highest score to the target product, while other product scores are randomly assigned 

based on a Gaussian distribution derived from overall ratings.  

Average Attack: Gives the highest score to the target product and generates scores for other products using a 

Gaussian distribution centered around the average score of selected products.  

AUSH Attack[18]: Uses GAN-based models to generate synthetic user data from real user data, augmenting the 

dataset with stealthy synthetic users. 

TNA Attack: Focuses on highly interactive users. It optimizes score differences between the target product and 

other products within this user group. 

DADA Attack[19]: Targets vulnerable users who are more susceptible to manipulation, aiming to maximize 

impact while minimizing detection, creating a more efficient and far-reaching attack. 

4.2.2 Defense Baseline: 

PCMF[20]: Enhances robustness by addressing the error matrix from discrepancies between predicted and actual 

ratings in matrix factorization. 

APT: Simulates poisoning attacks by injecting synthetic users to minimize empirical risk, improving adversarial 

resistance. 

GDA: Uses adversarial training with generative data augmentation to optimize the model by maximizing loss, 

boosting performance under attacks. 

RGCF[21]: Employs graph neural networks to filter out unreliable interactions, improving recommendation 

quality and system reliability. 

4.2.3 Metrics 

Here we use HitRatio(HR@K) as the evaluation metric. It measures the proportion of recommended items that a 

user actually interacts with or selects from the list provided. 4.3 Model Parameters 
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In our experiments, we set the value of k to 50 for the ML-100K and ML-1M datasets., and 1000 for the Yelp 

dataset due to its sparsity. We randomly selected 10 products as attack samples and then recorded the model's 

performance under various attack conditions.  

4.4 Overall Performance Comparison 

 

Table 1. The performance of target items (robustness) 

Dataset Attack Target item = 10 

Original Attacked AT PCMF RGCF GDA APT Ours 

ML-100K 

(HR@50) 

Random 4.34 19.83 16.35 9.83 11.63 11.70 6.77 6.19 

Average 4.34 31.33 24.38 9.04 15.04 19.89 9.17 9.32 

AUSH 4.34 41.37 29.22 20.11 30.02 27.63 18.99 16.02 

TNA 4.34 46.68 27.63 21.40 26.31 23.35 19.34 17.65 

DADA 4.34 52.39 33.98 25.08 29.83 31.07 17.22 15.67 

ML-1M 

(HR@50) 

Random 0.01 12.35 8.33 8.83 9.64 8.84 8.13 7.49 

Average 0.01 31.44 14.73 10.61 18.31 16.64 9.17 9.86 

AUSH 0.01 43.35 23.32 18.17 19.35 21.44 9.32 8.65 

TNA 0.01 47.67 27.66 16.80 23.34 21.47 13.44 14.72 

DADA 0.01 56.94 32.33 19.67 26.08 23.36 16.74 14.97 

Yelp 

(HR@1000) 

Random 1.31 4.33 4.21 2.87 3.15 3.66 2.94 2.31 

Average 1.31 5.72 5.11 3.14 4.77 5.19 3.07 3.48 

AUSH 1.31 13.61 12.91 9.35 9.81 8.17 6.35 5.48 

TNA 1.31 7.34 7.41 7.37 6.35 6.85 4.41 5.64 

DADA 1.31 14.98 11.36 7.24 10.15 11.33 6.14 6.27 

 

Compared with the initial model, the HitRatio of the attacked goods specified at the time of attack will increase 

significantly in the attacked model, while the recommended model using the robustness enhancement method will 

effectively suppress the increase in the click-through rate of this part of maliciously attacked goods. Our method 

presents better robustness than most of the current comparison baseline defense performance. 

4.5 Ablation Study 

In order to further verify the effectiveness of the proposed algorithm, we also conducted relevant ablation 

experiments to verify the results: 

 

Table 2. The ablation experoment of each part 

Dataset Attack Original Attacked AT 

ML-100K 

(HR@50) 

Random 4.34 19.83 16.35 

Average 4.34 31.33 24.38 

AUSH 4.34 41.37 29.22 

TNA 4.34 46.68 27.63 

DADA 4.34 52.39 33.98 

ML-1M 

(HR@50) 

Random 0.01 12.35 8.33 

Average 0.01 31.44 14.73 

AUSH 0.01 43.35 23.32 

TNA 0.01 47.67 27.66 

DADA 0.01 56.94 32.33 

Yelp 

(HR@1000) 

Random 1.31 4.33 4.21 

Average 1.31 5.72 5.11 

AUSH 1.31 13.61 12.91 

TNA 1.31 7.34 7.41 

DADA 1.31 14.98 11.36 
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Ablation experiments are conducted on the contribution of the data purification module to further analyze the 

difference between directly enhancing the data and using the data purification method to remove the natural noise 

in the data, and then using the data enhancement method to remove the counter noise in the data. The results of 

ablation experiments show that the additional data purification module can effectively cooperate with the data 

enhancement module to provide at least 10%+ additional data enhancement capability, thus enhancing the 

robustness of the model. 

5. Conclusion 

In this paper, aiming at the problems of lack of generalization and generalization bias in traditional data purification 

and data augmentation work, we propose a innovative framework for mutual learning of data purification and data 

augmentation tasks. Realizing collaborative enhancement through self-supervised learning strategy and diffusion 

model-based adversarial noise removal. A model-agnostic robust enhancement method for recommendation is 

proposed to solve the problem that most current methods need to design a special model structure according to the 

scene. 

We conducted experiments on three real-world data sets to verify the effects of our model. The results show that 

the effect of our model greatly exceeds the current baseline model, and the ablation test also validates the mutual 

enhancement effect of the two tasks of data purification and data enhancement. 
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