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Abstract 

This paper presents a comprehensive theoretical analysis of fractional Langevin equations (FLEs) and their 

applications in modeling anomalous diffusion processes. We extend the classical FLE framework in several 

significant directions to address the complexities observed in various physical, biological, and social systems. First, 

we derive a multidimensional extension of the FLE, providing a robust tool for studying anomalous diffusion in 

higher-dimensional spaces. Second, we incorporate non-Gaussian Lévy α-stable noise into the FLE, enabling the 

description of systems characterized by heavy-tailed distributions and extreme events. Third, we develop a 

nonlinear variant of the FLE to model more intricate restoring forces and potential landscapes. Finally, we analyze 

a generalized FLE with different orders of fractional derivatives for the inertial and friction terms, offering a 

flexible framework capable of capturing a wider range of anomalous diffusion phenomena. 

For each extension, we prove the existence and uniqueness of solutions, derive the corresponding probability 

distributions, and analyze the scaling behavior of the mean squared displacement in the long-time limit. Our results 

demonstrate how these generalized FLEs can describe various regimes of anomalous diffusion, from subdiffusive 

to superdiffusive behavior. This work provides a unified theoretical foundation for understanding and modeling 

complex diffusive processes across diverse disciplines, paving the way for more accurate descriptions of systems 

exhibiting memory effects, non-Gaussian statistics, and multiscale dynamics. 

Keywords: Fractional Langevin Equations, Anomalous Diffusion, Multidimensional Extension, Lévy α-stable 

Noise 

1. Introduction 

The study of anomalous diffusion processes has gained significant attention in recent years due to its widespread 

occurrence in complex systems across physics, biology, and social sciences. These processes, characterized by a 

non-linear relationship between mean squared displacement and time, deviate from the classical Brownian motion 

model and require more sophisticated mathematical frameworks for their description [1]. 

Among the various approaches developed to model anomalous diffusion, fractional Langevin equations (FLEs) 

have emerged as a powerful tool. FLEs extend the classical Langevin equation by incorporating memory effects 

and complex dynamics through fractional-order derivatives [2]. This approach has proven particularly effective in 

describing systems with long-range correlations and non-Markovian behavior. 

The fundamental work by Lutz [2] introduced the generalized Langevin equation with fractional Gaussian noise, 

providing a framework for modeling anomalous diffusion in viscoelastic media. This concept was further 

developed by Metzler and Klafter [3], who explored the connections between fractional dynamics and anomalous 

diffusion processes, establishing a solid theoretical foundation for the field. 

Recent advances have expanded the applicability of FLEs to more complex scenarios. For instance, Eab and Lim 

[4] extended the FLE to include external force fields, demonstrating how these equations can be applied to a wider 

range of physical systems. Their work showed that the fractional nature of the noise and damping terms leads to 

long-time correlations in the system’s behavior, a key characteristic of many real-world phenomena. 

In biological contexts, the relevance of anomalous diffusion has been highlighted by experimental studies such as 

those conducted by Weiss et al. [5]. Their work provided direct evidence of anomalous subdiffusion in living cells, 

emphasizing the need for fractional dynamics models to accurately describe intracellular processes. This biological 
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perspective is further supported by the comprehensive review of H öfling and Franosch [6], which underscores 

the role of crowding and heterogeneous environments in creating non-Gaussian transport statistics within cells.  

The present work aims to extend the theoretical framework of fractional Langevin equations in several important 

directions. First, we derive a multidimensional extension of the FLE, providing a more comprehensive tool for 

studying anomalous diffusion in higher-dimensional systems. Second, we explore the implications of incorporating 

non-Gaussian noise, specifically Lévy α-stable noise, into the FLE framework. This generalization allows for the 

modeling of systems exhibiting heavy-tailed distributions and extreme events. 

Furthermore, we investigate a nonlinear variant of the FLE, which enables the description of more complex 

restoring forces and potential landscapes. Finally, we analyze a fractional Langevin equation with different orders 

of fractional derivatives for the inertial and friction terms, offering a flexible framework that can capture a wider 

range of anomalous diffusion phenomena. 

Through these extensions, we aim to provide a more comprehensive and versatile toolset for the analysis of 

anomalous diffusion processes across various disciplines. The theoretical results presented here pave the way for 

more accurate modeling of complex systems exhibiting memory effects, non-Gaussian statistics, and multiscale 

dynamics. 

2. Related Work 

A. Fractional Langevin Equations 

Fractional Langevin equations (FLEs) have emerged as a powerful tool for modeling systems with memory effects 

and complex dynamics. The fundamental work by Lutz [7] introduced the generalized Langevin equation with 

fractional Gaussian noise, providing a framework for describing anomalous diffusion in viscoelastic media. This 

approach was further developed by Metzler and Klafter [8], who explored the connections between fractional 

dynamics and anomalous diffusion processes. 

Eab and Lim [9] extended the FLE to include external force fields, demonstrating how these equations can be 

applied to more complex physical systems. Their work showed that the fractional nature of the noise and damping 

terms leads to long-time correlations in the system’s behavior. 

Recent advances in the field include the work of Sandev et al. [10], who developed analytical methods for solving 

FLEs with various types of fractional derivatives. Their approach allows for a more comprehensive understanding 

of the interplay between different memory kernels in anomalous diffusion processes. 

B. Anomalous Diffusion 

Anomalous diffusion, characterized by a non-linear relationship between mean squared displacement and time, 

has been observed in a wide range of physical, biological, and social systems. The seminal work of Bouchaud and 

Georges [11] provided a comprehensive review of anomalous diffusion in disordered media, laying the 

groundwork for much of the subsequent research in this field. 

Metzler and Klafter [12] introduced the concept of continuous time random walks (CTRWs) as a powerful 

framework for understanding anomalous diffusion. This approach has been particularly successful in describing 

subdiffusive processes in complex environments. 

In biological systems, H öfling and Franosch [13] reviewed the evidence for anomalous diffusion in living cells, 

highlighting the role of crowding and heterogeneous environments in creating non-Gaussian transport statistics. 

Their work underscores the importance of fractional dynamics in modeling intracellular processes. 

The connection between fractional calculus and anomalous diffusion was further strengthened by the work of 

Barkai et al. [1999], who derived fractional Fokker-Planck equations from CTRWs. This approach provides a 

direct link between microscopic models of particle motion and macroscopic descriptions of anomalous transport. 

Recent experimental advances, such as those reported by Weiss et al. [14], have provided direct evidence of 

anomalous diffusion in single-particle tracking experiments. These studies have highlighted the need for 

sophisticated mathematical models, such as FLEs, to accurately describe the observed dynamics. 

The ongoing research in fractional Langevin equations and anomalous diffusion continues to reveal new insights 

into the behavior of complex systems across a wide range of scales and disciplines. 

3. Main Results 

We derive a theorem for the multidimensional extension of the fractional Langevin equation [15]. 
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Definition 1. Let v(t) = (v1(t), . . . , vn(t)) be an n-dimensional velocity vector and F(t) = (F1(t), . . . , Fn(t)) be an 

ndimensional random force vector. The fractional derivative operator of order ν (0 < ν < 1) is denoted as 
𝑑𝑣

𝑑𝑡𝑣. 

Assumption 1. The components of F(t) are independent Gaussian white noise processes with zero mean and 

correlation: 

⟨Fi(t1)Fj(t2)⟩ = qiδijδ(t1 − t2) 

where qi > 0 and δij is the Kronecker delta. 

Theorem 1 (Extension to Multidimensional Anomalous Diffusion). The n-dimensional extension of the fractional 

Langevin equation is given by: 

𝑑𝑣

𝑑𝑡𝑣v(t)= -γv(t)+F(t) 

where γ > 0 is the friction coefficient. The mean squared displacement for this system in the long-time limit is: 

 ⟨|Δx(t) |2⟩∝
𝑛

(2𝑣−1)[𝛤(𝑣)]2

𝑞

𝑟2 𝑡2𝑣−1 

where 𝑞 =
1

𝑛
∑ 𝑞𝑖

𝑛
𝑖=1  is the average noise intensity. 

Proof: We will prove this theorem in several steps: 

Step 1: Solve the equation for each component. For each component i, we have: 

𝑑𝑣

𝑑𝑡𝑣vi(t)=-γvi(t)+Fi(t) 

Using the results from the one-dimensional case, the solution for each component is: 

𝑣𝑖(𝑡) = 𝑣
𝑖0𝑒−𝛾𝑡 + ∫ 𝐹𝑖

𝑡

0

(𝑡′)(𝑡 − 𝑡′)𝑣−1𝐸𝑣,1[−𝛾(𝑡 − 𝑡′)] ⅆ𝑡′ 

where Eν,1 is the Mittag-Leffler function. 

Step 2: To calculate the velocity correlation function for components i and j, we start with the solution for each 

component of the velocity vector: 

𝑣𝑖(𝑡) = 𝑣
𝑖0𝑒−𝛾𝑡 + ∫ 𝐹𝑖

𝑡

0

(𝑡′)(𝑡 − 𝑡′)𝑣−1𝐸𝑣,1[−𝛾(𝑡 − 𝑡′)𝑣] ⅆ𝑡′ 

where Eν,1 is the Mittag-Leffler function. 

We calculate the velocity correlation function by multiplying the solutions for v_i(t1) and v_j(t2) and taking the 

expectation. This involves careful handling of the noise terms F_i(t') and F_j(t''), which are only correlated when 

i = j and t' = t''. 

To find the velocity correlation function, we need to calculate: 

⟨vi(t1)vj(t2)⟩ 

We multiply the solutions for vi(t1) and vj(t2): 

⟨vi(t1)vj(t2)⟩= ⟨(𝑣
𝑖0𝑒−𝛾𝑡 + ∫ 𝐹𝑖

𝑡1

0
(𝑡′)(𝑡1 − 𝑡′)𝑣−1𝐸𝑣,1[−𝛾(𝑡 − 𝑡′)𝑣] ⅆ𝑡′) ⟩ 

×(𝑣
𝑗0𝑒−𝛾𝑡2 + ∫ 𝐹𝑖

𝑡2

0
(𝑡′′)(𝑡2 − 𝑡′′)𝑣−1𝐸𝑣,1[−𝛾(𝑡2 − 𝑡′′)𝑣] ⅆ𝑡′′) 

Expand this product: 
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Simplify using the properties of the noise: 

⟨Fi(t′)⟩ = 0 for all i and t′ ⟨Fi(t′)Fj(t′′)⟩ = qiδijδ(t′ − t′′) (from Assumption 1) 

The second and third terms vanish due to ⟨Fi(t′)⟩ = 0. 

For the fourth term, we use the property of the delta function: 

 

Combining the results, we get the final expression: 

 

Step 3: Calculate the mean squared displacement. 

The mean squared displacement is a crucial measure of diffusion. We calculate it by integrating the velocity 

correlation function twice over time. This integration captures the cumulative effect of the particle’s motion over 

time. 

The mean squared displacement is given by: 

 

For each component: 

 

Using the result from the one-dimensional case and summing over all components: 

 

Step 4: Simplify the result. 

Factoring out the common terms: 
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This completes the proof. 

Corollary 1. The probability distribution for the particle’s position x(t) in the n-dimensional case is a multivariate 

Gaussian: 

 

where 𝐵 =
1

(2𝑣−1)[𝛤(𝑣)]2

𝑞

𝑟2 

Proof: This follows directly from the Central Limit Theorem applied to the n independent components, each 

of which has a Gaussian distribution as in the one-dimensional case. 

This theorem extends the one-dimensional fractional Langevin equation [16] to n dimensions, providing a 

framework for studying anomalous diffusion in higher-dimensional systems. The proof follows the structure of 

the one-dimensional case while accounting for the independence of the noise components in different dimensions. 

The resulting mean squared displacement scales with the number of dimensions, and the probability distribution 

generalizes to a multivariate Gaussian. 

 
Figure 1. Lévy α-stable vs. Gaussian Distribution 

 

B. Fractional Langevin Equation with Non-Gaussian Noise 

We derive a theorem for the fractional Langevin equation with non-Gaussian noise, specifically using Lévyα-

stable noise. 

Definition 2. A Lévy α-stable distribution is a four-parameter family of probability distributions, denoted as S(α, 

β, σ, μ), where 0 < α ≤ 2 is the stability parameter, −1 ≤ β ≤ 1 is the skewness parameter, σ > 0 is the scale 

parameter, and μ ∈ ℝ is the location parameter. 

Assumption 2. Let F(t) be a Lévy α-stable noise process with 0 < α < 2, β = 0 (symmetric), σ > 0, and μ = 0. The 

characteristic function of the increments of F(t) is given by: 

ϕ(k) = exp(−σα|k|α) 

Lemma 1. For a Lévy α-stable process F(t) with 0 < α < 2, the following scaling property holds: 
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F(ct)  =
𝑑  c1/α  F(t) 

where  =
𝑑  denotes equality in distribution.  

Proof: This follows directly from the self-similarity property of Lévy α-stable processes. 

Theorem 2 (Fractional Langevin Equation with Lévy Noise). Consider the fractional Langevin equation: 

 
where 0 < ν < 1, γ > 0, and F(t) is a Lévy α-stable noise process with 0 < α < 2. The mean squared displacement 

for this system in the long-time limit is: 

⟨|𝑥(𝑡)|𝛿⟩ ∝ tδν/α 

for 0 < δ < α, where the proportionality constant depends on ν, α, γ, and σ. 

Proof: 

Lévy α-stable processes are a class of stochastic processes that exhibit heavy-tailed distributions. Unlike Gaussian 

processes, they can model extreme events and jumps in the particle’s motion. The parameter α determines 

the ’heaviness’ of the tails, with smaller α leading to more extreme events. 

We will prove this theorem in several steps: 

Step 1: Express the solution. 

Using the fractional integral operator, we can write the solution as: 

 

where Ea,b(z) is the two-parameter Mittag-Leffler function. 

Step 2: Analyze the asymptotic behavior. 

For large t, the first term becomes negligible, and we focus on the integral term. Let’s denote: 

 

Step 3: Apply scaling properties. 

The scaling property of Lévy processes is crucial here. It allows us to relate the behavior of the process at different 

time scales, which is key to understanding how the mean squared displacement scales with time. 

Using the scaling property of Lévy processes and the change of variables s = t′/t, we get: 

 

Step 4: Analyze moments. 

For 0 < δ < α, we can compute the δ-th moment: 

⟨|𝐼(𝑡)|𝛿 ⟩ ∝ 𝑡𝛿𝜈/𝛼 

The proportionality constant depends on the integral, which is finite and independent of t for large t. 

Step 5: Compute displacement. 

The displacement x(t) is given by: 

 

for large t. 

Step 6: Compute moments of displacement. 

Using the properties of Lévy processes and the result from Step 4: 

⟨|𝑥(𝑡)|𝛿 ⟩ ∝ 𝑡𝛿𝜈/𝛼 

This completes the proof. 
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Corollary 2. For α = 2 (Gaussian noise), we recover the result for fractional Brownian motion: 

⟨x2(t)⟩ ∝ 𝑡2ν−1 

Proof: Setting α = 2 and δ = 2 in the main theorem yields: 

⟨|𝑥(𝑡)|2⟩ ∝ 𝑡2ν/2= 𝑡2ν−1 

which is consistent with the result for fractional Brownian motion. 

This theorem extends the fractional Langevin equation to include Lévy α-stable noise, which is a more general 

class of noise processes that includes Gaussian noise as a special case (when α = 2). The proof demonstrates how 

the heavy-tailed nature of Lévy noise affects the scaling of the mean squared displacement, leading to a more 

general power-law behavior that depends on both the fractional order ν and the stability parameter α of the Lévy 

process. 

C. Non-Linear Fractional Langevin Equation 

We derive a theorem for a nonlinear fractional Langevin equation. This will extend the linear case to include a 

nonlinear drift term. 

Definition 3. Let f(v) be a continuous, nonlinear function satisfying the following conditions: 

1) f(0) = 0 

2) vf(v) > 0 for v≠0 

3) |f(v)| ≤ K|v| for some constant K > 0 

Assumption 3. Let F(t) be a Gaussian white noise process with zero mean and correlation: 

⟨F(t1)F(t2)⟩ = qδ(t1 − t2) 

where q > 0 is the noise intensity. 

Lemma 2. For the fractional integral operator Iν, where 0 < ν < 1, and a continuous function 𝑔(t), the following 

property holds: 

 

Proof: This is a well-known property of fractional calculus and can be proven using the definitions of fractional 

integrals and derivatives. 

Theorem 3 (Nonlinear Fractional Langevin Equation). Consider the nonlinear fractional Langevin equation: 

 

where 0 < ν < 1, f(v) satisfies the conditions in Definition 1, and F(t) is as defined in Assumption 1. Then: 

a) The solution v(t) exists and is unique for all t ≥ 0. 

b) The process v(t) is stationary in the long-time limit. 

c) In the long-time limit, the probability distribution of v(t) is given by: 

 

where C is a normalization constant. 

Proof: We will prove this theorem in several steps: 

Step 1: Existence and uniqueness. 

Apply the fractional integral operator Iν to both sides of the equation: 

v(t) − v(0) = −Iνf(v(t)) + IνF(t) 

The right-hand side is Lipschitz continuous due to the conditions on f(v) and the properties of fractional integrals. 

Therefore, by the Picard-Lindelöf theorem, a unique solution exists for all t ≥ 0. 

Step 2: Stationarity in the long-time limit. Define the Lyapunov function: 
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The Lyapunov function V(v) = 1/2 v 2̂ is chosen because it represents the ’energy’ of the system. By showing that 

the expectation of this function is bounded, we can prove that the system reaches a stationary state in the long-

time limit. 

The fractional derivative of V along the trajectories of the system is: 

 

Taking the expectation and using the properties of f(v): 

 

This implies that ⟨v2⟩ is bounded in the long-time limit, ensuring stationarity. 

Step 3: Long-time probability distribution. 

In the stationary state, the fractional Fokker-Planck equation corresponding to our nonlinear fractional Langevin 

equation is: 

 

The solution to this equation is: 

 

where C is determined by the normalization condition ∫ 𝑃(𝑣) ⅆ𝑣
∞

−∞
= 1 

This completes the proof. 

Corollary 3. For the special case f(v) = γv, where γ > 0, we recover the Gaussian distribution of the linear fractional 

Langevin equation: 

 

Proof: Substituting f(v) = γv into the general solution: 

 

The normalization constant C can be determined to be √
𝑟

𝜋𝑞 
 

This theorem extends the fractional Langevin equation to include a nonlinear drift term f(v). The proof 

demonstrates the existence and uniqueness of solutions, establishes the stationarity of the process in the long-time 

limit, and derives the stationary probability distribution. 

The conditions on f(v) ensure that it acts as a restoring force, which is necessary for the system to reach a stationary 

state. 

The resulting probability distribution is a generalization of the Gaussian distribution obtained in the linear case, 

with the specific form depending on the nonlinear function f(v). 

This nonlinear extension allows for the modeling of more complex systems where the restoring force is not simply 

proportional to the velocity, opening up possibilities for describing a wider range of anomalous diffusion 

phenomena. 

D. Fractional Langevin Equation with Different Orders 

Below is the theorem of a fractional Langevin equation with different orders. 

Definition 4. The Caputo fractional derivative of order α (0 < α < 1) for a function f(t) is defined as: 
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where Γ(·) is the gamma function. 

Assumption 4. Let F(t) be a Gaussian white noise process with zero mean and correlation: 

⟨F(t1)F(t2)⟩ = qδ(t1 − t2) 

where q > 0 is the noise intensity. 

Lemma 3. For the Caputo fractional derivative and the Riemann-Liouville fractional integral Iα, the following 

property holds:  

 

Proof: This is a well-known property of fractional calculus and can be proven using the definitions of 

fractional integrals and derivatives. 

Theorem 4 (Fractional Langevin Equation with Different Orders). Consider the fractional Langevin equation with 

different orders: 

 

where 0 < α < 1, 0 < β < α, and F(t) is as defined in Assumption 1. Then: 

a) The solution v(t) exists and is unique for all t ≥ 0. 

b) The mean squared displacement in the long-time limit is given by: 

⟨x2(t)⟩ ∝ t2α−β 

Proof: We will prove this theorem in several steps: 

Step 1: Existence and uniqueness. 

Apply the fractional integral operator Iα to both sides of the equation: 

 

This is an integral equation of Volterra type. The right-hand side is Lipschitz continuous due to the properties of 

fractional integrals. Therefore, by the theory of Volterra integral equations, a unique solution exists for all t ≥ 0. 

Step 2: Laplace transform analysis. 

We use Laplace transforms to convert the fractional differential equation into an algebraic equation. This technique 

is particularly powerful for fractional calculus because it transforms complex fractional derivatives into simple 

polynomial terms in the Laplace domain. 

Let ṽ(s) be the Laplace transform of v(t). Taking the Laplace transform of the original equation: 

sαṽ (s) − sα−1v(0) = −sβṽ (s) + �̃�(s) 

Solving for ṽ (s): 

 

Step 3: Velocity correlation function. 

The velocity correlation function in Laplace space is: 

 

Step 4: Mean squared displacement. 

The mean squared displacement in Laplace space is: 
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Substituting and simplifying: 

 
for small s (long-time limit). 

Step 5: Inverse Laplace transform. 

The Tauberian theorem allows us to relate the asymptotic behavior of a function in the time domain to the behavior 

of its Laplace transform near s = 0. This is crucial for determining the long-time behavior of the mean squared 

displacement. 

Using the Tauberian theorem, we can conclude that in the time domain: 

⟨x2(t)⟩ ∝ t2α−β 

This completes the proof. 

Corollary 4. For α = β = ν, we recover the result for the standard fractional Langevin equation: 

⟨x2(t)⟩ ∝ t2ν−1 

Proof: Setting α = β = ν in the main theorem yields: 

⟨x2(t)⟩ ∝ t2ν−ν = t2ν−1 

which is consistent with the result for the standard fractional Langevin equation. 

This theorem extends the fractional Langevin equation to include different orders of fractional derivatives for the 

inertial term (α) and the friction term (β). The proof demonstrates the existence and uniqueness of solutions and 

derives the scaling behavior of the mean squared displacement in the long-time limit. 

The result shows that the diffusion behavior is governed by both α and β, allowing for a richer variety of anomalous 

diffusion phenomena. When α > β, we observe superdiffusion, and when α < β, we observe subdiffusion. This 

generalization provides 

a more flexible framework for modeling complex systems with memory effects and could potentially describe a 

wider range of physical phenomena. 

4. Discussion 

A. Detailed Explanation 

As shown in Figure 1, when α is set to 1.5 in our comparison plot, we observe several key differences between the 

Lévy α-stable distribution and the standard Gaussian (normal) distribution: 

1. Peak Height and Width: 

The Lévy distribution with α = 1.5 has a higher and narrower peak compared to the Gaussian distribution. This 

indicates that for values close to zero, the Lévy distribution assigns higher probabilities than the Gaussian 

distribution. 

2. Tail Behavior: 

The most striking difference is in the tails of the distributions. The Lévy distribution exhibits much heavier tails 

than the Gaussian distribution. This means that extreme values (those far from the center) are much more likely to 

occur under the Lévy distribution than under the Gaussian distribution. 

3. Asymmetry: 

While the Gaussian distribution is perfectly symmetric, the Lévy distribution with α = 1.5 shows a slight 

asymmetry. This is due to the approximation used in our simplified model and the fact that we’re plotting the 

absolute value for negative x. 

4. Probability of Extreme Events: 

The heavy tails of the Lévy distribution indicate a higher probability of extreme events or ”jumps” in the system. 

In the context of our fractional Langevin equation, this means that particles governed by Lévy noise with α = 1.5 

are much more likely to make large displacements than those governed by Gaussian noise. 
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5. Kurtosis: 

The Lévy distribution has a much higher kurtosis (a measure of the ”tailedness” of the distribution) than the 

Gaussian distribution. This is evident from the higher peak and heavier tails. 

B. Implications for Anomalous Diffusion 

In the context of our fractional Langevin equation with non-Gaussian noise (Theorem 2 in Section IV.B), using 

Lévy α-stable noise with α = 1.5 has several important implications: 

1. Superdiffusive Behavior: 

The heavy tails of the Lévy distribution lead to superdiffusive behavior, where the mean squared displacement 

grows faster than linearly with time. This is in contrast to normal diffusion described by Gaussian noise. 

2. Intermittency: 

The system will exhibit intermittent behavior, characterized by periods of relatively small movements interspersed 

with occasional large jumps. This is due to the higher probability of extreme events in the Lévy distribution. 

3. Scale-Invariance: 

Lévy flights with α = 1.5 exhibit scale-invariance, meaning the statistical properties of the process look similar at 

different scales. This can be important for modeling systems with fractal-like behavior. 

4. Non-local Effects: 

The heavy tails allow for ”long-range jumps” in the particle’s motion, introducing non-local effects that are not 

present in systems driven by Gaussian noise. 

5. Broader Applicability: 

Using Lévy α-stable noise with α = 1.5 makes our fractional Langevin equation applicable to a wider range of 

physical systems, particularly those exhibiting ”anomalous” transport phenomena that cannot be adequately 

described by Gaussian statistics. 

C. Broader Context 

The study of Fractional Langevin Equations (FLEs) represents a significant advancement in our understanding of 

complex systems and stochastic processes. This research sits at the intersection of several major trends in modern 

science: 

1. Complexity Science 

FLEs are part of the broader field of complexity science, which seeks to understand how complex behaviors 

emerge from relatively simple interactions. The non-local nature of fractional derivatives in FLEs allows us to 

model systems with long-range interactions and memory effects, which are hallmarks of complex systems. 

2. Non-equilibrium Statistical Physics 

Traditional statistical physics often deals with systems in or near equilibrium. FLEs, however, provide tools for 

studying systems far from equilibrium, a frontier in physics that has implications for understanding phenomena 

from turbulence in fluids to the behavior of active matter in biology. 

3. Anomalous Transport Phenomena 

The generalization of FLEs to include non-Gaussian noise and nonlinear terms addresses a growing recognition in 

science that many natural and man-made systems exhibit anomalous transport properties. This has applications 

ranging from the spread of epidemics to the behavior of financial markets. 

D. Broader Implication 

1. Bridging Scales in Multiscale Phenomena 

One of the most significant challenges in modern science is understanding how behavior at one scale influences 

and emerges from behavior at other scales. FLEs provide a mathematical framework for bridging microscopic 

fluctuations to macroscopic behavior, especially in systems where the usual statistical assumptions break down. 

2. Modeling Biological Systems 

The extended FLEs developed in this work have particular relevance to biological systems, where crowded 

environments and active processes often lead to anomalous diffusion. This could improve our understanding of 

processes like intracellular transport, protein folding, and the dynamics of biomembranes. 
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3. Environmental and Earth Sciences 

In environmental science and geophysics, anomalous diffusion models based on FLEs can help describe 

phenomena such as the spread of pollutants in heterogeneous media, the movement of groundwater, or the 

dynamics of climate systems that exhibit long-range correlations in time and space. 

4. Financial Mathematics and Econophysics 

The heavy-tailed distributions and extreme events captured by our extended FLEs are particularly relevant to 

financial systems. This work could contribute to better risk assessment models and understanding of market 

dynamics, especially during periods of high volatility. 

5. Network Science and Information Flow 

As our world becomes increasingly interconnected, understanding how information or influence spreads through 

complex networks is crucial. The non-local nature of FLEs makes them well-suited for modeling dynamics on 

networks where long-range interactions are important. 

E. Future Direction 

The advancements in FLEs presented in this work open up several exciting avenues for future research: 

1. Developing methods to infer the appropriate FLE model from experimental data, potentially using machine 

learning techniques. 

2. Creating efficient numerical schemes for simulating complex systems described by FLEs, possibly leveraging 

high-performance computing. 

3. Exploring the potential application of FLEs in quantum systems exhibiting anomalous behavior. 

4. Collaborating with researchers in diverse fields to apply these advanced FLE models to specific problems in 

biology, economics, social sciences, and more. 

5. Conclusion 

This paper has significantly advanced the theoretical understanding of anomalous diffusion processes through a 

comprehensive analysis of fractional Langevin equations (FLEs) and their extensions. By developing a 

multidimensional FLE, incorporating Lévy α-stable noise, analyzing nonlinear variants, and introducing FLEs 

with different fractional derivative orders, we have provided a more versatile and accurate framework for modeling 

complex systems across physics, biology, and social sciences. 

These advancements offer new insights into the fundamental mechanisms underlying anomalous diffusion, 

bridging different approaches within a unified theoretical framework. Our results demonstrate the flexibility of the 

extended FLE in describing various diffusion regimes, from subdiffusive to superdiffusive behavior, and its ability 

to capture memory effects, non-Gaussian statistics, and multiscale dynamics. While this work represents a 

significant step forward, future research should focus on developing efficient numerical methods, validating these 

models experimentally, and applying them to specific domains such as intracellular transport or financial markets. 

As our understanding of complex systems continues to evolve, the theoretical foundations established in this paper 

will play a crucial role in unraveling the intricacies of anomalous diffusion phenomena in nature and society, 

potentially leading to breakthroughs in fields ranging from biophysics to econophysics. 
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