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Abstract 

In 1781, Gaspard Monge first proposed the practical problem of relocating building materials while minimizing 

workers’ effort. Mathematically, the problem can be reiterated as finding a mapping T0 that transforms a random 

variable (X) following probability measure (μ) into a random variable (Y) following probability measure (ν), with 

minimal cost. Afterward, it has been widely studied and applied in statistics, machine learning, and economics, 

which concern the study of “distance” between usually a pair of probability distributions. The focus of this paper 

is centered on investigating and generalizing stability estimates for optimal transport plans, particularly through 

the lens of strong polynomial convexity. Building on previous research using plug-in estimators to strengthen the 

convergence rate of discrete or semi-discrete estimators for optimal transport plans, this paper introduces a novel 

stability estimate leveraging L-Lipschitz continuity and a paradigmatic methodology based on polynomial 

convexity, the understanding of which remains limited. 

1. Introduction 

Recent studies emphasize the profound nature of optimal transport theory and its applications. Active studies have 

been conducted on investigating optimization problems and stability estimation of empirical approximation of 

optimal transport plan [1], [2]. Stability estimates directly yield rates of convergence for estimators of optimal 

transport maps constructed by plugging in empirical distributions. This helps quantify the sample complexity for 

accurate recovery. Moreover, stability bounds can reveal structural properties relating the geometry/complexity of 

the underlying distributions to the difficulty of estimating the transport map between them, which provides insight 

into which problems are statistically harder [3]-[5]. Many regularization methods for optimal transport yield dual 

potentials that satisfy forms of polynomial convexity rather than strict convexity [6], e.g., entropic regularization 

and Sinkhorn-type algorithms. The incorporation of optimal transport theory in fields such as machine learning 

and economics underscores the broad impact of this mathematical theory. Studies in machine learning, for instance, 

apply Wasserstein distance to compute similarities between images. [7] Economic studies involve the results from 

optimal transport theory into studying marriage and labor market, where matching of couples and assignments of 

labors can be computed via application of the mathematical theory. [8] 

Furthermore, studying polynomial convexity provides stability guarantees for transport maps estimated using these 

common approaches. Polynomial convexity assumptions allow the analysis to cover non-strictly convex 

optimization problems that arise in applications like imaging, economics, and machine learning. This expands the 

applicability beyond traditional strongly convex optimal transport [9]. 

The contribution of this study is to introduce a novel estimation method to deal with strong polynomial convexity 

up to a finite order, leveraging the Taylor remainder approximation. Applying the assumption of polynomial 

convexity enhances the feasibility of computational analysis, given its widespread applicability. 

Keywords: Optimal transport, polynomial convexity, stability analysis 

2. Main Results 

Definition I (Barycentric projection [1]). Consider the set 

 
Given any 𝛾 ∈ �̃�min and 𝑎 under γ, the barycentric projection of 𝛾 is defined as the conditional mean of 𝑏, more 

precisely 
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Now we recall the general definition of the transport plan between probability measures. 

 

 

Figure 1. Illustration representing the probability measures 𝜇 and 𝑣 on the space ℝ𝑑. The arrow labeled 𝑇0 =
𝜙0 represents the optimal transport map 𝑇0, which is the gradient of the optimal transport potential 𝜙0. The 

arrow pointing from ℝ to the midpoint between 𝜇 and 𝑣 indicates that 𝜙0 is a real-valued function defined 

on ℝ𝑑. 

 

Definition II 𝑃𝑎𝑐  refers to the set of probability measures on ℝ𝑑
 which are absolutely continuous with respect to 

the Lebesgue measure. Specifically: 

𝑃𝑎𝑐(ℝ𝑑) = {𝜇: 𝜇 is a probability measure on Rd such that 𝜇(𝐴) = 0 for any Lebesgue null set 𝐴}. 

So if 𝜇 ∈ 𝑃𝑎𝑐(ℝ𝑑), it has a Radon-Nikodym derivative 𝑓 =
𝑑𝜇

𝑑𝑥
 with respect to the Lebesgue measure, and in 

general, for any measurable set 𝑋, 

𝜇(𝑋) = ∫𝑓(𝑥) ⅆ𝑥
𝑥

 

We call 𝑓 the density of 𝜇. 

Lemma 1 (Brenier-McCann polar factorization theorem [2], [10]). For a given 𝜇 ∈ 𝑃𝑎𝑐(ℝ𝑑), there exists a 𝜇 

almost everywhere unique function 𝑇0(·): ℝ𝑑 → ℝ𝑑
 as the gradient of a real-valued d-variate convex function, 

say 𝜑0(·): ℝ𝑑 → ℝ , satisfying 𝑇0# 𝜇 = 𝑣 . Moreover, for all Borel sets 𝐴, 𝐵 ⊆ ℝ𝑑 , the unique minimizer 

provided 𝜇, 𝑣 ∈ 𝑃2(ℝ𝑑) is the distribution 𝜋(𝐴 × 𝐵) = 𝜇(𝐴 ∩ (𝑇0)−1(𝐵)). 

The Brenier-McCann theorem states that, given an absolutely continuous probability measure 𝜇, there exists a 

unique (up to μ-almost everywhere) optimal transport map 𝑇0  that pushes forward 𝜇  to another probability 

measure 𝑣. This means that for any Borel set 𝐵 ⊆ ℝ𝑑, we have 𝑣(𝐵) = 𝜇(𝑇0
−1(𝐵)). 

Furthermore, the optimal transport map 𝑇0 is the gradient of a convex function ϕ0, which is called the optimal 

transport potential. The uniqueness of the minimizer π for the optimal transport problem between 𝜇 and 𝑣 (when 

both are in 𝑃2(ℝ𝑑)) is given by 𝜋(𝐴 × 𝐵) = 𝜇(𝐴 ∩ (𝑇0)−1(𝐵))for all Borel sets 𝐴, 𝐵 ⊆ ℝ𝑑. 

Figure 1 provides a visual representation of the key components and relationships in the Brenier-McCann polar 

factorization theorem, helping to understand the connection between the probability measures, the optimal 

transport map, and the optimal transport potential. 

Definition III (Potential function and optimal transport map [11]). The function 𝑇0: ℝ𝑑 → ℝ𝑑
 which satisfies 

𝑇0# 𝜇 = 𝑣 is defined as the 𝑂𝑇 map from 𝜇 to 𝑣. A convex function 𝜑0(·) satisfying 𝛻𝜑0=𝑇0 is defined as 

an 𝑂𝑇 potential. 

Secondly, we have the alternate dual representation which gives: 
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           (1) 

                           (2) 

Where the space of convex functions over ℝ𝑑 is denoted as Ƒ, elements of 𝐿1(𝜇). Moreover, we let 𝑓∗(·) denote 

the standard Legendre-Fenchel dual which we define as the following: 

                   (3) 

Definition IV (Subdifferential set and subgradient). Given a convex function 𝑓: ℝ𝑑 → ℝ ∪ {∞}, we define the 

subdifferential set of 𝑓(·) at 𝑥 ∈ dome (𝑓): = {𝑧 ∈ ℝ𝑑: 𝑓(𝑧) < ∞} as follows: 

 

Any element in the set 𝜕𝑓(𝑥) is called a subgradient of 𝑓(·) at 𝑥. 

Definition V (Strong convexity [2], [9], [10]). A strongly convex function 𝑓: ℝ𝑑 → ℝ ∪ {∞} with parameter 𝜆 >
0 satisfies that for all 𝑥, 𝑦 ∈ dom (𝑓): = {𝑧 ∈ ℝ𝑑: 𝑓(𝑧) < ∞} , we have 

 

where 𝜉𝑥 ∈ 𝜕𝑓(𝑥), the subgradient of 𝑓(·) at 𝑥, as in Definition III. 

Theorem 1 (Stability estimate [1], [12]). Suppose that 𝜇 , 𝑣 ∈ 𝑃𝑎𝑐 (ℝ𝑑) ∩ 𝑃2(ℝ𝑑)   and �̃�𝑚, �̃�𝑛 ∈ 𝑃2(ℝ𝑑) . 

Assume that 𝑇0(·) (as defined in (𝐼)) is L-Lipschitz (𝐿 > 0). Then, 

 

where 𝜈𝑚
† : = 𝑇0#�̃�𝑚, 𝜑0

∗(·), 𝛹�̃�𝑚, �̃�𝑛(·):=
𝑎𝑟𝑔𝑚𝑖𝑛

𝑓 ∈ 𝐹
𝑆�̃�𝑚

, �̃�𝑛 (𝑓), 𝛹�̃�𝑚, 𝜈𝑚
† (·): =

𝑎𝑟𝑔𝑚𝑖𝑛
𝑓 ∈ 𝐹

𝑆�̃�𝑚,𝜈𝑚
† (𝑓). For real-

valued convex functions on ℝ𝑑, we let D denote their space. 

Definition VI [Strong m-th order polynomial convexity [2], [9], [10]] A function 𝑓:ℝ𝑑 → ℝ ∪ +∞ is said to be 

strongly 𝑚-th order polynomial convex with parameter 𝜆 > 0 if the function 

 

is strongly convex with parameter 𝜆 > 0 for every choice of 𝑥, 𝑦 ∈ dom(𝑓), where 𝐷𝑘𝑓(𝑥) denotes the 𝑘-th 

order differential of 𝑓 at 𝑥, and we use the convention that 𝐷0𝑓(𝑥) = 𝑓(𝑥). 

Equivalently, 𝑓(·) is strongly 𝑚-th order polynomial convex with parameter 𝜆 if for all 𝑥, 𝑦 ∈ dom(𝑓) and 

for all 𝑡 ∈ [0,1], 

 

The key requirement is that the 𝑚-th order Taylor residual term (1−t)m | 𝑥 − 𝑦 | m+1
 enters the inequality with 

modulus 𝜆. This is a generalization of strong convexity which corresponds to the case 𝑚= 1. 
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As with strong convexity, 𝑚-th order polynomial convexity becomes weaker as 𝑚 increases, but allows more 

flexibility. The proofs proceed analogously, but involve more intricate Taylor expansions and remainder term 

analysis. 

Theorem 2 [Improved Stability Estimate with Strong 𝑚-th Order Polynomial Convexity] Suppose that 𝜇, 𝑣 ∈ 

𝑃𝑎𝑐(ℝ𝑑) ∩ 𝑃2(ℝ𝑑) and �̃�𝑚, �̃�𝑛 ∈ 𝑃2(ℝ𝑑). Assume that 𝑇0(·) is L-Lipschitz and 𝜙0
∗(·) is strongly 𝑚-th order 

polynomial convex for some 𝑚≥1 with parameter 𝜆>0. Then, we have 

 
where 𝐶1, 𝐶2> 0 depend only on 𝑚, 𝜆 and the diameters of the supports of 𝜇, 𝑣. 

Proof: As in the proof of Theorem 1, fix an arbitrary 𝛾 ∈ �̃�min and define 

                       (4) 

Using the conditional Jensen’s inequality, we have 

 

where 𝑅𝑚(𝑎, 𝑏) denotes the 𝑚-th order Taylor remainder term for 𝜙0
∗(𝑎) around the point 𝑏. Using the strong 

𝑚-th order polynomial convexity of 𝜙0
∗, we have for any 𝑎, 𝑏 ∈ dom(𝜙0

∗) 

                  (8) 

Applying this with 𝑎=�̃�𝛾𝑚,𝑛(𝑏) and 𝑏 = 𝑇0(𝑏), and using the fact that ∇𝜙0
∗(𝑇0(𝑏)) = 𝑏 yields 

                   (9) 

Using (9) to lower bound the integral remainder term in (7) gives 

                  (10) 

Expanding 𝑆2 and combining it with (10) yields 

(11) 

Applying Hölder’s inequality to the second term on the right-hand side of (11) with conjugates 𝑃 =
𝑚+1

𝑚
 and 𝑞 =

𝑚 + 1 gives 

 

Plugging this back into (11), we obtain 
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The term max |dual, integrals| refers to the maximum absolute value of two specific dual integrals that arise from 

the dual formulation of the optimal transport problem. These dual integrals are used to bound the difference 

between the squared Wasserstein distances 𝑤2
2(�̃�𝑚, �̃�𝑛) and 𝑤2

2(�̃�𝑚, 𝑣𝑚): 

 

Here, 𝛹�̃�𝑚
∗ , �̃�𝑛and 𝛹�̃�𝑚, 𝜈𝑚 ∗ are the optimal solutions to the dual problems of the optimal transport between 

the empirical measures (�̃�𝑚, �̃�𝑛) and (�̃�𝑚, 𝑣𝑚), respectively. The integrals are taken with respect to the signed 

measure (�̃�𝑛−𝑣𝑚), which represents the difference between the empirical measure �̃�𝑛 and the true measure 𝑣𝑚. 

Multiplying both sides of (15) by 
𝜆𝑚+1

𝐶1
yields 

 (17) 

Finally, applying Young’s inequality to the last term in (17) gives 

          (18) 

which leads to the desired result: 

 

This completes the proof. 

Further discussion and severization on computing the upper bound of 𝑆2 with respect to the Wasserstein distance 

is to finished in the future. 

3. Discussion 

 Theorem 2 depends on the convexity parameter 𝜆, with 1/𝜆𝑚+1 m+1 instead of just 1/𝜆. 

 An additional term appears involving higher order norms of the transport map difference. 

 Constants have worse dependence on smoothness parameters like the Lipschitz constant L. item Theorem 2 

could potentially allow for the analysis of a class of regularization methods in optimal transport that yield 

only polynomial convex dual potentials. 

 The appearance of higher order difference terms on the right-hand side of Theorem 2 suggests that under 

weaker convexity, the stability estimate involves finer properties beyond just the Lipschitz constant of the 

optimal map 𝑇0. Additional smoothness moduli play a role. item Since many statistical and optimization 

methods satisfy forms of polynomial convexity (e.g. gradient boosting, neural nets), Theorem 2 represents a 

stepping stone towards stability analyses of plug-in estimators involving learned transport maps. 

4. Conclusion 

This paper has focused on investigating and extending stability estimates for optimal transport plans, particularly 

with the study of strong polynomial convexity. By building upon prior research utilizing plug-in estimators to 

enhance convergence rates of discrete or semi-discrete estimators for optimal transport plans, this study contributes 
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a novel stability estimate, which leverages L-Lipschitz continuity and a methodology rooted in polynomial 

convexity, an area of understanding that remains not fully explored. 

5. Glossary 

μ: Probability measures on a 𝜎 algebra. 

supp(f): Support set, set of points that give non-zero output of a real-valued function (𝑓) whose domain is defined. 

Borel set: Any set in a topological space that is formed by open sets through relative complement, countable union, 

and countable intersection. 

Absolutely continuous probability measures: A random variable X is absolutely continuous if there exists a 

real-valued function f satisfying 𝑃𝑟(𝑋) = ∫
𝐴

𝑓(𝑥) ⅆ𝑥, where A is an arbitrary Borel set. 

ℝ𝑑: Euclidean space with dimensions d. 

T#: A push forward operator T#μ = ν is a linear map corresponding to the displacement of the support of the points. 

L-Lipschitz continuity: Given two metric spaces (X,dX) and (Y, dY), where dX denotes the metric on the set X 

and dY is the metric on set Y , a function f : X→Y is called Lipschitz continuous if there exists a real constant K ≥ 

0 such that, for all x1 and x2 in X, dY (f(x1), f(x2) ≤ KdX(x1, x2) 

Wp(a, b): p-Wasserstein distance with respect to distance d and ground distance matrix D 

𝜵ϕ: which we denote as the gradient of convex function ϕ : ℝ𝑛
 → ℝ𝑛 

𝑷𝒂𝒄(ℝ𝒅): It refers to the set of probability measures on ℝ𝑑 which are absolutely continuous with respect to the 

Lebesgue measure. 

𝑷𝟐(ℝ𝒅):   We denote it as the space of all probability measures on ℝ𝑑  with finite second moments. 
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