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Abstract 

Quantum computing rests upon two theoretical pillars: superposition and entanglement. But some physicists say 

that this is a very shaky foundation and quantum computing success will have to be based on a different theoretical 

foundation. The g-qubit theory supports that point of view. Current article is the first one of two and about the 

superposition principle. Quantum superposition principle states that any two quantum wave functions can be 

superposed, and the result be another valid wave function. It specifically refers to linearity of the Schrodinger 

equation. In the g-qubit theory quantum wave functions are identified by points on the surface of three-dimensional 

sphere 𝕊3. That gives different, more physically feasible, not mysterious, explanation of what the superposition 

is.  

Keywords: geometric algebra, wave functions, observables, measurements 

1. Introduction. Arithmetic of the 𝐺3
+ elements 

For two arbitrary elements of 𝐺3
+ , 𝑔1 = 𝛼1 + 𝐼𝑆1

𝛽1  and 𝑔2 = 𝛼2 + 𝐼𝑆2
𝛽2 , see [1], with generally different 

bivector planes of 𝐼𝑆1
 and 𝐼𝑆2

, both 𝐼𝑆1
 and 𝐼𝑆2

 assumed to be unit value ones, we have: 

𝑔1 + 𝑔2 = (𝛼1 + 𝛼2) + (𝐼𝑆1
𝛽1 + 𝐼𝑆2

𝛽2) 

The sum of two bivectors 𝐼𝑆1
𝛽1 + 𝐼𝑆2

𝛽2 is a bivector lying in plane different from both 𝐼𝑆1
 and 𝐼𝑆2

 (see Figure 

1.1)  

 

Figure 1.1. Addition of two bivectors using corresponding normal vectors in the right-screw oriented space 

 

To make the result more convenient for calculations expand bivectors 𝐼𝑆1
 and 𝐼𝑆2

 in a basis {𝐵1, 𝐵2, 𝐵3} - an 

arbitrary triple of unit value mutually orthogonal bivectors in three dimensions satisfying, with not critical 

assumption of right-hand screw orientation 𝐵1𝐵2𝐵3 = 1, the multiplication rules (see Figure 1.2): 

𝐵1𝐵2 = − 𝐵3, 𝐵1𝐵3 = 𝐵2, 𝐵2𝐵3 = − 𝐵1(Note 1) 
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Figure 1.2. Basis of bivectors, vectors associated with the bivectors, and unit value pseudoscalar 

 

Thus: 

𝐼𝑆1
= 𝑏1

1𝐵1 + 𝑏1
2𝐵2 + 𝑏1

3𝐵3 

𝐼𝑆2
= 𝑏2

1𝐵1 + 𝑏2
2𝐵2 + 𝑏2

3𝐵3 

Then: 

𝐼𝑆1
𝛽1 + 𝐼𝑆2

𝛽2 = 𝛽1(𝑏1
1𝐵1 + 𝑏1

2𝐵2 + 𝑏1
3𝐵3) + 𝛽2(𝑏2

1𝐵1 + 𝑏2
2𝐵2 + 𝑏2

3𝐵3)

= (𝛽1𝑏1
1 + 𝛽2𝑏2

1)𝐵1 + (𝛽1𝑏1
2 + 𝛽2𝑏2

2)𝐵2 + (𝛽1𝑏1
3 + 𝛽2𝑏2

3)𝐵3 

and finally 

𝑔1 + 𝑔2 = (𝛼1 + 𝛼2) + (𝛽1𝑏1
1 + 𝛽2𝑏2

1)𝐵1 + (𝛽1𝑏1
2 + 𝛽2𝑏2

2)𝐵2 + (𝛽1𝑏1
3 + 𝛽2𝑏2

3)𝐵3 

The length of the sum, due to the unit values of 𝐼𝑆1
 and 𝐼𝑆2

, that’s (𝑏1
1)2 + (𝑏1

2)2 + (𝑏1
3)2 = 1 and (𝑏2

1)2 +

(𝑏2
2)2 + (𝑏2

3)2 = 1, can be written as  

√(𝛼1 + 𝛼2)2 + 𝛽1
2 + 𝛽2

2 + 2𝛽1𝛽2(𝑠1 ⋅ 𝑠2) 

where 𝑠1 = 𝑏1
1𝑒1 + 𝑏1

2𝑒2 + 𝑏1
3𝑒3 and 𝑠2 = 𝑏2

1𝑒1 + 𝑏2
2𝑒2 + 𝑏2

3𝑒3 (Note 2) are vectors dual to 𝐼𝑆1
 and 𝐼𝑆2

, 𝑠1 =

−𝐼3𝐼𝑆1
, 𝑠2 = −𝐼3𝐼𝑆2

. 

Take an arbitrary 𝑔 = 𝛼 + 𝐼𝑆𝛽. Rewrite it in the form 𝑔 = √𝛼2 + 𝛽2 (
𝛼

√𝛼2+𝛽2
+

𝛽

√𝛼2+𝛽2
𝐼𝑆). Since (

𝛼

√𝛼2+𝛽2
)

2

+

(
𝛽

√𝛼2+𝛽2
)

2

= 1  we can define 
𝛼

√𝛼2+𝛽2
≡ cos 𝜑  and 

𝛽

√𝛼2+𝛽2
≡ sin 𝜑 . In that way we can write 𝑔 =

√𝛼2 + 𝛽2(cos 𝜑 + sin 𝜑 𝐼𝑆).  

Expand 𝐼𝑆 = 𝑏1𝐵1 + 𝑏2𝐵2 + 𝑏3𝐵3 . Directional cosines {𝑏1, 𝑏2, 𝑏3}  define orientation of unit radius disc 𝐼𝑆  in 

three-dimensional space.  

Consider sphere of radius √𝛼2 + 𝛽2  and intersect it by a plane parallel to 𝐼𝑆 . Choose some two-dimensional 

coordinate system {𝑥, 𝑦} in that plane. In this way 𝑔 is fully identified by the sphere of radius √𝛼2 + 𝛽2, vector 

𝑠 of the length equal to the sphere radius √𝛼2 + 𝛽2 with directional cosines {𝑏1, 𝑏2, 𝑏3}, and angle of rotation 

around 𝑠 in the coordinate system {𝑥, 𝑦}: 𝜑 = 𝑐𝑜𝑠−1 (
𝛼

√𝛼2+𝛽2
) (see Fig.1.3.) 
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Figure 1.3. Geometric representation of a 𝐺3
+ element 

 

The sum of two 𝐺3
+ elements with vectors 𝑠1 and 𝑠2 associated with unit value bivectors 𝐼𝑆1

 and 𝐼𝑆2
 has the 

associated vector 𝑠 = 𝑠1 + 𝑠2, (see Fig.1.4) 

 

 
Figure 1.4. Geometric representation of addition 

 

Torsion angle in plane orthogonal to 𝑠1 + 𝑠2 is 𝑐𝑜𝑠−1 (
𝛼1+𝛼2

√(𝛼1+𝛼2)2+𝛽1
2+𝛽2

2+2𝛽1𝛽2(𝑠1⋅𝑠2)
). 

2. Superposition of Two Basic Wave Functions Corresponding to |0⟩ and |1⟩ 

 

The quantum mechanical qubit state, |𝜓⟩ = 𝑧1|0⟩ + 𝑧2|1⟩, is linear combination of two basis states |0⟩ and |1⟩. 
In more details: 

|𝜓⟩ = (
𝛼 + 𝑖𝛽1

𝛽3 + 𝑖𝛽2
) 
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There exist infinite number of options to select triple {𝐵1, 𝐵2, 𝐵3}. Thus, the procedure of recovering a g-qubit 

associated with |𝜓⟩ = 𝑧1|0⟩ + 𝑧2|1⟩ is the following one: 

It is necessary, see [2], [3], firstly, to define bivector 𝐵𝑖1
  in three dimensions identifying the torsion plane. 

Secondly, choose another bivector 𝐵𝑖2
 orthogonal to 𝐵𝑖1

. The third bivector 𝐵𝑖3
 , orthogonal to both 𝐵𝑖1

 and 

𝐵𝑖1
, is then defined by the first two by orientation (handedness, right screw in the used case ): 𝐼3𝐵𝑖1

𝐼3𝐵𝑖2
𝐼3𝐵𝑖3

=

𝐼3.  

Wave functions in the suggested theory are operators acting through measurements on observables:  

(𝛼 + 𝐼𝑆𝛽̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝐶(𝛼 + 𝐼𝑆𝛽) 

For any wave function 𝛼 + 𝐵𝑖1
𝛽𝑖, 𝑖 = 1,2,3, corresponding to |0⟩ (assuming 𝛼2 + 𝛽𝑖

2 = 1) we get: 

(𝛼 − 𝐵𝑖1
𝛽𝑖)𝐵𝑖1

(𝛼 + 𝐵𝑖1
𝛽𝑖) = (𝛼2 + 𝛽𝑖

2)𝐵𝑖1
= 𝐵𝑖1

 

For the wave functions 𝛽(𝑖+2)𝑚𝑜𝑑3𝐵(𝑖+2)𝑚𝑜𝑑3 + 𝛽(𝑖+1)𝑚𝑜𝑑3𝐵(𝑖+1)𝑚𝑜𝑑3, , 𝑖 = 1,2,3, corresponding to |1⟩ (with 

the agreement 3𝑚𝑜𝑑3 = 3) the value of observable 𝐵𝑖1
is (with same assumption 𝛽(𝑖+2)𝑚𝑜𝑑3

2 + 𝛽(𝑖+1)𝑚𝑜𝑑3
2 =

1): 

(−𝛽(𝑖+2)𝑚𝑜𝑑3𝐵(𝑖+2)𝑚𝑜𝑑3 − 𝛽(𝑖+1)𝑚𝑜𝑑3𝐵(𝑖+1)𝑚𝑜𝑑3)𝐵𝑖1
(𝛽(𝑖+2)𝑚𝑜𝑑3𝐵(𝑖+2)𝑚𝑜𝑑3 + 𝛽(𝑖+1)𝑚𝑜𝑑3𝐵(𝑖+1)𝑚𝑜𝑑3) 

 = −(𝛽(𝑖+2)𝑚𝑜𝑑3
2 + 𝛽(𝑖+1)𝑚𝑜𝑑3

2)𝐵𝑖1
= −𝐵𝑖1

 

Let us take an arbitrary bivector observable expanded in basis {𝐵1, 𝐵2, 𝐵3} ≡ {𝐵𝑖1
, 𝐵𝑖2

, 𝐵𝑖3
}: 

𝐶 = 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3 

The result of measurement by wave function corresponding to |0⟩ is: 

(𝛼 − 𝛽1𝐵1)𝐶(𝛼 + 𝛽1𝐵1) = 𝐶1𝐵1 + [𝐶2(𝛼2 − 𝛽1
2) − 2𝐶3𝛼𝛽1]𝐵2 + [𝐶3(𝛼2 − 𝛽1

2) + 2𝐶2𝛼𝛽1]𝐵3 = 𝐶1𝐵1 +

(𝐶2 cos 2𝜑 − 𝐶3 sin 2𝜑)𝐵2 + (𝐶2 sin 2𝜑 + 𝐶3 cos 2𝜑)𝐵3 ,   (2.1) 

using parametrization 𝛼 = cos 𝜑, 𝛽1 = sin 𝜑. 

The result of measurement by wave function corresponding to |1⟩ is: 

(−𝛽2𝐵2 − 𝛽3𝐵3)𝐶(𝛽2𝐵2 + 𝛽3𝐵3) = −𝐶1𝐵1 + [𝐶2(𝛽2
2 − 𝛽3

2) + 2𝐶3𝛽2𝛽3]𝐵2 + [2𝐶2𝛽2𝛽3 − 𝐶3(𝛽2
2 − 𝛽3

2)]𝐵3 =

−𝐶1𝐵1 + (𝐶2 cos 2𝜃 + 𝐶3 sin 2𝜃)𝐵2 + (𝐶2 sin 2𝜃 − 𝐶3 cos 2𝜃)𝐵3, (2.2) 

with 𝛽2 = cos 𝜃, 𝛽3 = sin 𝜃. 

This is a deeper result compared with conventional quantum mechanics where  

|0⟩ = (𝛼+𝑖𝛽1
0

) and |1⟩ = ( 0
𝛽3+𝑖𝛽2

) 

Conclusion: 

- Measurement of observable 𝐶 = 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3 by any wave function corresponding to |0⟩ is 

bivector with the 𝐵1 component equal to unchanged value 𝐶1. The 𝐵2 and 𝐵3 components of the 

result of measurement are equal to 𝐵2 and 𝐵3 components of 𝐶 rotated by angle 2𝜑 defined by 

𝛼 = cos 𝜑, 𝛽1 = sin 𝜑 where plane of rotation is 𝐵1. 

- Measurement of observable 𝐶 = 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3 by any wave function corresponding to |1⟩ is 

bivector with the 𝐵1 component equal to flipped value −𝐶1. The 𝐵2 and 𝐵3 components of the 

result of measurement are equal to 𝐵2 and 𝐵3 components of 𝐶 rotated by angle 2𝜃 defined by 

𝛽2 = cos 𝜃, 𝛽3 = sin 𝜃 where plane of rotation is 𝐵1 but direction of rotation is opposite to the case 

of |0⟩. 

If we denote by 𝑠𝑜|0⟩ and 𝑠𝑜|1⟩ arbitrary wave functions represented in 𝐺3
+ by 𝛼 + 𝛽1𝐵1 and 𝛽2𝐵2 + 𝛽3𝐵3 =

(𝛽3 + 𝛽2𝐵1)𝐵3 they only differ by factor 𝐵3 in 𝑠𝑜|1⟩, thus for the measurement by them we have:  

𝑠𝑜|1⟩̅̅ ̅̅ ̅̅ 𝐶𝑠𝑜|1⟩ = 𝐵3
̅̅ ̅𝑠𝑜|0⟩̅̅ ̅̅ ̅̅ 𝐶𝑠𝑜|0⟩𝐵3 

That simply means that the measurement on the left side is received from 𝑠𝑜|0⟩̅̅ ̅̅ ̅̅ 𝐶𝑠𝑜|0⟩ by its flipping in plane 𝐵3 

(see Figure 2.1) 
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Figure 2.1. Difference in measuring by 𝑠𝑜|0⟩ and 𝑠𝑜|1⟩ 

 

Probabilities of the results of measurements are measures of wave functions on 𝕊3 surface giving considered 

results. 

Suppose we are interested in the probability of the result of measurement in which the observable component 

𝐶1𝐵1  does not change. This is relative measure of wave functions √𝛼2 + 𝛽1
2 (

𝛼

√𝛼2+𝛽1
2

+
𝛽1

√𝛼2+𝛽1
2

𝐵1)  in the 

measurements: 

      √𝛼2 + 𝛽1
2 (

𝛼

√𝛼2+𝛽1
2

−
𝛽1

√𝛼2+𝛽1
2

 𝐵1) 𝐶√𝛼2 + 𝛽1
2 (

𝛼

√𝛼2+𝛽1
2

+
𝛽1

√𝛼2+𝛽1
2

𝐵1)  (2.3) 

That measure is equal to 𝛼2 + 𝛽1
2, that is equal to 𝑧1

2 in the down mapping from 𝐺3
+ to Hilbert space of 𝑧1|0⟩ + 

𝑧2 |1⟩. Thus, we have clear explanation of common quantum mechanics wisdom on “probability of finding system 

in state |0⟩”.  

Similar calculations explain correspondence of 𝛽3
2 + 𝛽2

2 to 𝑧2
2 in the qubit 𝑧1|0⟩ + 𝑧21⟩ when the component 

𝐶1𝐵1 in measurement just got flipped. 

Let us consider superposition of 𝛼 + 𝛽1𝐵1 and 𝛽2𝐵2 + 𝛽3𝐵3 with some coefficients 𝑝1 and 𝑝2(Note 3),  

𝑝1(𝛼 + 𝛽1𝐵1) + 𝑝2(𝛽2𝐵2 + 𝛽3𝐵3), 

and measuring by it of 𝐶 = 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3. 

[𝑝1(𝛼 − 𝛽1𝐵1) + 𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)]𝐶[𝑝1(𝛼 + 𝛽1𝐵1) + 𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)]

= 𝑝1(𝛼 − 𝛽1𝐵1)𝐶𝑝1(𝛼 + 𝛽1𝐵1) + 𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)𝐶𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)

+ 𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)𝐶𝑝1(𝛼 + 𝛽1𝐵1) + 𝑝1(𝛼 − 𝛽1𝐵1)𝐶𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)

= 𝑝1(𝛼 − 𝛽1𝐵1)𝐶𝑝1(𝛼 + 𝛽1𝐵1) + 𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)𝐶𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)

+ 𝑝1(𝛼 − 𝛽1𝐵1)𝐶𝑝1(𝛼 + 𝛽1𝐵1)𝑝1(𝛼 − 𝛽1𝐵1)𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)

+ 𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)𝐶𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)𝑝1(𝛼 + 𝛽1𝐵1) 

It follows from this formula that the result of measurement by wave function 𝑝1(𝛼 + 𝛽1𝐵1) + 𝑝2(𝛽2𝐵2 + 𝛽3𝐵3) 

makes the 𝐶1𝐵1 component unchanged and two other components rotated around the normal to 𝐵1, see (2.1) and 

(2.3), with probability 𝑝1
2 (item 𝑝1(𝛼 − 𝛽1𝐵1)𝐶𝑝1(𝛼 + 𝛽1𝐵1)). Then it just flips the 𝐶1𝐵1 component and two 

other components rotated around the normal to 𝐵1, but in opposite direction see (2.2) with probability 𝑝2
2 (item 

𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)𝐶𝑝2(𝛽2𝐵2 + 𝛽3𝐵3)). Other two items are correspondingly the first above result subjected to 



ijas.ideasspread.org   International Journal of Applied Science Vol. 5, No. 2; 2022 

 13 Published by IDEAS SPREAD 

 

Clifford (parallel) translation on 𝕊3  by 𝑝1𝑝2(𝛼 − 𝛽1𝐵1)(𝛽2𝐵2 + 𝛽3𝐵3)  and the second result subjected to 

opposite Clifford translation 𝑝1𝑝2(−𝛽2𝐵2 − 𝛽3𝐵3)(𝛼 + 𝛽1𝐵1) . They are neither (2.1) nor (2.2) and their 

probabilities to make 𝐶1𝐵1  unchanged or flipped are zero. Though, they give two other different available 

measurement results. 

3. Superposition of two arbitrary wave functions  

Any arbitrary 𝐺3
+ wave function 𝛼 + 𝛽1𝐵1 +𝛽2𝐵2 +𝛽3𝐵3 can be rewritten either as 0-type wave function or 

1-type wave function: 

𝛼 + 𝛽1𝐵1 +𝛽2𝐵2 +𝛽3𝐵3 = 𝛼 + 𝐼𝑆(𝛽1,𝛽2,𝛽3)√𝛽1
2 + 𝛽2

2 + 𝛽3
2, 

where 𝐼𝑆(𝛽1,𝛽2,𝛽3) =
𝛽1𝐵1 +𝛽2𝐵2 +𝛽3𝐵3

√𝛽1
2+𝛽2

2+𝛽3
2

, 0-type, 

or 

𝛼 + 𝛽1𝐵1 +𝛽2𝐵2 +𝛽3𝐵3 = (𝛽3 + 𝛽2𝐵1 − 𝛽1𝐵2 − 𝛼𝐵3)𝐵3 = (𝛽3 + 𝐼𝑆(𝛽2,−𝛽1,−𝛼 )√𝛼2 + 𝛽1
2 + 𝛽2

2) 𝐵3, 

where 𝐼𝑆(𝛽2,−𝛽1,−𝛼 ) =
𝛽2𝐵1−𝛽1𝐵2−𝛼𝐵3

√𝛼2+𝛽1
2+𝛽2

2
, 1-type. 

All that means that any 𝐺3
+  wave function 𝛼 + 𝛽1𝐵1  +𝛽2𝐵2  +𝛽3𝐵3  measuring observable 𝐶1𝐵1  +  𝐶2𝐵2  + 

𝐶3𝐵3 does not change the observable projection onto plane of 𝐼𝑆(𝛽1,𝛽2,𝛽3) =
𝛽1𝐵1 +𝛽2𝐵2 +𝛽3𝐵3

√𝛽1
2+𝛽2

2+𝛽3
2

 and just flips the 

observable projection onto plane 𝐼𝑆(𝛽2,−𝛽1,−𝛼 ) =
𝛽2𝐵1−𝛽1𝐵2−𝛼𝐵3

√𝛼2+𝛽1
2+𝛽2

2
. 

Take two arbitrary wave functions and rewrite the first one as 0-type wave function and the second one as 1-type 

wave function. Then all the results of Sec.2 become applicable for their superposition. It will follow that there will 

be a result of measurement  

𝑝1
2 ( 𝛼 − 𝐼𝑆(𝛽1,𝛽2,𝛽3)√𝛽1

2 + 𝛽2
2 + 𝛽3

2) 𝐶 ( 𝛼 + 𝐼𝑆(𝛽1,𝛽2,𝛽3)√𝛽1
2 + 𝛽2

2 + 𝛽3
2) 

not changing the projection of 𝐶  onto plane of 𝐼𝑆(𝛽1,𝛽2,𝛽3)  and keeping probability 𝑝1
2 ; plus, result of 

measurement  

𝑝2
2 (−𝐵3  (𝛽3 − 𝐼𝑆(𝛽2,−𝛽1,−𝛼 )√𝛼2 + 𝛽1

2 + 𝛽2
2)) 𝐶 ( (𝛽3 + 𝐼𝑆(𝛽2,−𝛽1,−𝛼 )√𝛼2 + 𝛽1

2 + 𝛽2
2) 𝐵3) 

just flipping projection of 𝐶 in plane of 𝐼𝑆(𝛽2,−𝛽1,−𝛼 ) and keeping probability 𝑝2
2. Two other results represent 

the first two subjected to Clifford (parallel) translations on the sphere 𝕊3 by  

𝑝1𝑝2 ( 𝛼 − 𝐼𝑆(𝛽1,𝛽2,𝛽3)√𝛽1
2 + 𝛽2

2 + 𝛽3
2) (𝛽3 + 𝐼𝑆(𝛽2,−𝛽1,−𝛼 )√𝛼2 + 𝛽1

2 + 𝛽2
2) 

and 

𝑝1𝑝2 (𝛽3 − 𝐼𝑆(𝛽2,−𝛽1,−𝛼 )√𝛼2 + 𝛽1
2 + 𝛽2

2) (𝛼 + 𝐼𝑆(𝛽1,𝛽2,𝛽3)√𝛽1
2 + 𝛽2

2 + 𝛽3
2) 

correspondingly. 

4. Conclusions 

Superposition of any two wave functions in the frame of g-qubit theory gives another wave function the result of 

measurement by which is more complicated than in conventional quantum mechanics. In addition to the two results 

of measurements coming from composed items of the wave functions there appear two additional items which are 

Clifford (parallel) translations of the first two results in opposite directions on the sphere 𝕊3. 
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Notes 

Note 1. Opposite orientation 𝐵1𝐵2𝐵3 = −1 can be equivalently used 

Note 2. Length √𝛼2 + 𝛽2  of vector 𝑠  associated with 𝑔 = 𝛼 + 𝐼𝑆𝛽  will be also called module of 𝑔  and 

denoted |𝑔| 

Note 3. Due to orthogonality of 𝛼 + 𝛽1𝐵1 and 𝛽2𝐵2 + 𝛽3𝐵3 in Euclidean sense on the three-sphere 𝑠1 ⋅ 𝑠2 = 0 

in this case 
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